需要GPU(cuda)访问在部署模型时

huangapple go评论74阅读模式
英文:

Need GPU (cuda) access while deploying the model

问题

I need assistance with deploying a pre-trained model. I have created a custom score.py file for the deployment process. However, the docker created on the CPU instance does not provide access to the GPU, which poses a problem for predicting with PyTorch or TensorFlow models as they require input to be converted to tensors loaded on the GPU. Can you suggest a solution?

My score.py script -

import something

def init():
    global model

    model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "use-case1-model")

    model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))
    logging.info("Init complete")

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

def run(data):

    json_data = json.loads(data) 

    title = json_data["input_data"]["title"]
    att = json_data["input_data"]["attributes"]
    
    result = {}

    for i in range(len(title)):

        my_dict = {}
        for j in range(len(att)):
            
            attr = att[i][j]

            t, a = nobert4token(tokenizer, title[i].lower(), attr)

            x = X_padding(t)
            y = tag_padding(a)

            tensor_a = torch.tensor(y, dtype=torch.int32)
            tensor_a = torch.unsqueeze(tensor_a, dim=0).to("cuda")

            tensor_t = torch.tensor(x, dtype=torch.int32)
            tensor_t = torch.unsqueeze(tensor_t, dim=0).to("cuda")

            output = model([tensor_t, tensor_a])

            predict_list = output.tolist()[0]
            
            my_dict[attr] = " ".join(words_p)

        result[title[i]] = my_dict

    return result

My invoke script-

ml_client.online_endpoints.invoke(
    endpoint_name=endpoint_result.name,
    deployment_name=green_deployment_uc1.name,
    request_file=os.path.join("./dependencies", "sample.json"),
)

My conda.yaml-

channels:
  - conda-forge
dependencies:
  - python=3.8
  - pip=22.1.2
  - numpy=1.21.2
  - scikit-learn=0.24.2
  - scipy=1.7.1
  - 'pandas>=1.1,<1.2'
  - pytorch=1.10.0
  - pip:
      - 'inference-schema[numpy-support]==1.5.0'
      - xlrd==2.0.1
      - mlflow==1.26.1
      - azureml-mlflow==1.42.0
      - tqdm==4.63.0
      - pytorch-transformers==1.2.0
      - pytorch-lightning==2.0.2
      - seqeval==1.2.2
      - azureml-inference-server-http==0.8.0
name: model-env

Error that I am getting -

127.0.0.1 - - [29/May/2023:10:03:32 +0000] "GET / HTTP/1.0" 200 7 "-" "kube-probe/1.18"
2023-05-29 10:03:34,291 E [70] azmlinfsrv - Encountered Exception: Traceback (most recent call last):
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 130, in invoke_run
    run_output = self._wrapped_user_run(**run_parameters, request_headers=dict(request.headers))
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 154, in <lambda>
    self._wrapped_user_run = lambda request_headers, **kwargs: self._user_run(**kwargs)
  File "/var/azureml-app/dependencies/score.py", line 129, in run
    tensor_a = torch.unsqueeze(tensor_a, dim=0).to("cuda")
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/torch/cuda/__init__.py", line 247, in _lazy_init
    torch._C._cuda_init()
RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx

The above exception was the direct cause of the following exception:

If you think why I used "model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))"

please refer to this forum- https://learn.microsoft.com/en-us/answers/questions/1291498/facing-problem-while-deploying-model-on-azure-ml-a

Documentation - https://learn.microsoft.com/en-us/azure/machine-learning/how-to-deploy-mlflow-models-online-endpoints?view=azureml-api-2&tabs=sdk

英文:

I need assistance with deploying a pre-trained model. I have created a custom score.py file for the deployment process. However, the docker created on the CPU instance does not provide access to the GPU, which poses a problem for predicting with PyTorch or TensorFlow models as they require input to be converted to tensors loaded on the GPU. Can you suggest a solution?

My score.py script -

import something

# original = torch.load


# def load(*args):
#     return torch.load(*args, map_location=torch.device(&quot;cpu&quot;),pickle_module=None)


# def init():
#     global model
#     model_path = os.path.join(os.getenv(&quot;AZUREML_MODEL_DIR&quot;), &quot;use-case1-model&quot;)
#     # &quot;model&quot; is the path of the mlflow artifacts when the model was registered. For automl
#     # models, this is generally &quot;mlflow-model&quot;.

#     with mock.patch(&quot;torch.load&quot;, load):
#         model = mlflow.pyfunc.load_model(model_path)

#     logging.info(&quot;Init complete&quot;)

def init():
    global model

    model_path = os.path.join(os.getenv(&quot;AZUREML_MODEL_DIR&quot;), &quot;use-case1-model&quot;)

    model = mlflow.pytorch.load_model(model_path, map_location=torch.device(&#39;cpu&#39;))
    logging.info(&quot;Init complete&quot;)


tokenizer = BertTokenizer.from_pretrained(&quot;bert-base-uncased&quot;)
            

def run(data):

    json_data = json.loads(data) 

    title = json_data[&quot;input_data&quot;][&quot;title&quot;]
    att = json_data[&quot;input_data&quot;][&quot;attributes&quot;]
    
    result = {}

    for i in range(len(title)):

        my_dict = {}
        for j in range(len(att)):
            
            attr = att[i][j]

            t, a = nobert4token(tokenizer, title[i].lower(), attr)

            x = X_padding(t)
            y = tag_padding(a)

            tensor_a = torch.tensor(y, dtype=torch.int32)
            tensor_a = torch.unsqueeze(tensor_a, dim=0).to(&quot;cuda&quot;)

            tensor_t = torch.tensor(x, dtype=torch.int32)
            tensor_t = torch.unsqueeze(tensor_t, dim=0).to(&quot;cuda&quot;)

            output = model([tensor_t, tensor_a])

            predict_list = output.tolist()[0]
            
            my_dict[attr] = &quot; &quot;.join(words_p)

        result[title[i]] = my_dict


    return result

My invoke script-

ml_client.online_endpoints.invoke(
    endpoint_name=endpoint_result.name,
    deployment_name=green_deployment_uc1.name,
    request_file=os.path.join(&quot;./dependencies&quot;, &quot;sample.json&quot;),
)

My conda.yaml-

channels:
  - conda-forge
dependencies:
  - python=3.8
  - pip=22.1.2
  - numpy=1.21.2
  - scikit-learn=0.24.2
  - scipy=1.7.1
  - &#39;pandas&gt;=1.1,&lt;1.2&#39;
  - pytorch=1.10.0
  - pip:
      - &#39;inference-schema[numpy-support]==1.5.0&#39;
      - xlrd==2.0.1
      - mlflow== 1.26.1
      - azureml-mlflow==1.42.0
      - tqdm==4.63.0
      - pytorch-transformers==1.2.0
      - pytorch-lightning==2.0.2
      - seqeval==1.2.2
      - azureml-inference-server-http==0.8.0
name: model-env

Error that I am getting -

127.0.0.1 - - [29/May/2023:10:03:32 +0000] &quot;GET / HTTP/1.0&quot; 200 7 &quot;-&quot; &quot;kube-probe/1.18&quot;
2023-05-29 10:03:34,291 E [70] azmlinfsrv - Encountered Exception: Traceback (most recent call last):
  File &quot;/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py&quot;, line 130, in invoke_run
    run_output = self._wrapped_user_run(**run_parameters, request_headers=dict(request.headers))
  File &quot;/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py&quot;, line 154, in &lt;lambda&gt;
    self._wrapped_user_run = lambda request_headers, **kwargs: self._user_run(**kwargs)
  File &quot;/var/azureml-app/dependencies/score.py&quot;, line 129, in run
    tensor_a = torch.unsqueeze(tensor_a, dim=0).to(&quot;cuda&quot;)
  File &quot;/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/torch/cuda/__init__.py&quot;, line 247, in _lazy_init
    torch._C._cuda_init()
RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx

The above exception was the direct cause of the following exception:

If you think why I used "model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))"

please refer to this forum- https://learn.microsoft.com/en-us/answers/questions/1291498/facing-problem-while-deploying-model-on-azure-ml-a

Documentation - https://learn.microsoft.com/en-us/azure/machine-learning/how-to-deploy-mlflow-models-online-endpoints?view=azureml-api-2&amp;tabs=sdk

答案1

得分: 0

为了解决这个问题,您可以修改您的代码,确保张量加载到CPU而不是GPU上。
在您的代码中添加设备变量:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

在**run()**函数中替换以下代码:

tensor_a = torch.tensor(y, dtype=torch.int32)
tensor_a = torch.unsqueeze(tensor_a, dim=0).to(device)

tensor_t = torch.tensor(x, dtype=torch.int32)
tensor_t = torch.unsqueeze(tensor_t, dim=

<details>
<summary>英文:</summary>

To solve this issue, you can modify your code to ensure that the tensors are loaded onto the CPU instead of the GPU.
Add device variable in your code: 

    device = torch.device(&quot;cuda&quot;  if  torch.cuda.is_available() else  &quot;cpu&quot;)

Replace below code in **run ()** function:

     tensor_a = torch.tensor(y, dtype=torch.int32)
     tensor_a = torch.unsqueeze(tensor_a, dim=0).to(&quot;device&quot;)
    
     tensor_t = torch.tensor(x, dtype=torch.int32)
     tensor_t = torch.unsqueeze(tensor_t, dim=0).to(&quot;device&quot;)

  Below is the example for the error and fix.

Error Reproduced;
[![enter image description here][1]][1]

Fix:

[![enter image description here][2]][2]


  [1]: https://i.stack.imgur.com/kSi5E.png
  [2]: https://i.stack.imgur.com/CzwnO.png

</details>



huangapple
  • 本文由 发表于 2023年5月29日 18:44:30
  • 转载请务必保留本文链接:https://go.coder-hub.com/76356663.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定