英文:
How does the metafor aggregate() function affect single-outcome studies in a multi-level meta-analysis?
问题
我目前正在进行一项荟萃分析研究。在我的研究中,有几项研究报告了多个结果。根据文献,我发现多层次荟萃分析可能是合并这些多个结果的一种好方法。
然而,当我进行分析时,如我在标题中简要总结的,出现了一些问题。我在R中使用了metafor
包,并且我想使用教程示例来解释。您可以在下面找到这个教程的链接(我将在此问题页面附上重要细节):
https://www.metafor-project.org/doku.php/tips:forest_plot_with_aggregated_values
问题是,在这个示例中,虽然第4、5和8项研究只有一个估计值,但在聚合后,它们的置信区间扩展了,甚至从显著水平扩展到非显著水平(https://www.metafor-project.org/lib/exe/fetch.php/tips:forest_plot_aggregated_estimates.png)。
此外,在最终的聚合森林图中,一些研究的置信区间包括0,但汇总估计不包括0。这不是有点不合理吗?
由于多层次模型和aggregate()
函数的具体数学过程对我来说是一个黑盒子,我问chatgpt为什么会出现这种情况。它回答我说,因为报告了多个结果的研究在给予更高精度,而只报告了一个结果的研究则被认为不够精确。
首先,我不确定chatgpt是否理解了问题。其次,我认为大多数应用研究人员也不了解多层次模型背后的具体过程。那么,当检查这种不符合直觉的聚合森林图时,是否可能存在问题呢?
英文:
I'm currently conducting a meta-analysis study. In my study, there are several studies that reported multiple outcomes. According to the literature, I figured out that the multilevel meta-analysis could be a good way to combine these multiple outcomes.
However, when I did the analysis, some problem occurred as I briefly summarized in my title. I used the metafor
package in R and I'd like to use the tutorial example to explain. You can find the link of this tutorial below (I will attach essential detail in this question page):
https://www.metafor-project.org/doku.php/tips:forest_plot_with_aggregated_values
The problem is that in this example, while study 4, 5, and 8 only have one estimate, after aggregation, their confidence intervals expand and even expand from a significant level to a non-significant level.
Moreover, in the final aggregated forest plot, several studies' confidence intervals include 0, but the summary estimate doesn't include 0. Isn't it a bit counter-intuitive?
Since the specific mathematical process of the multi-level model and aggregate()
function is a black box for me, I asked chatgpt why could that occur. It answered me that because studies that reported multiple outcomes are given more precision while studies that reported only one outcomes are considered less precise.
Firstly, I'm not sure whether chatgpt got the point. Secondly, I think most applied researchers don't know the specific process behind the multi-level model, either. So, could it be problematic when this counter-intuitive aggregated forest plot is inspected?
答案1
得分: 0
以下是已翻译的内容:
在那个链接中讨论的聚合类型是一个特定情况,其中一个人希望创建一个聚合数据集(使用多层模型的信息),以便使用等效模型对聚合值进行简单的元分析,产生与多层模型相同的结果。这需要以一种方式计算聚合值的抽样方差,以便它们包含来自多层模型的异质性。因此,置信区间变得更宽,即使对于只为模型提供单个估计的研究也是如此。
至于大多数聚合值周围的置信区间包括0,而总结估计周围的置信区间排除0:这就是元分析背后的思想。如果个别估计不精确,那么汇总估计仍然可以足够精确以达到统计显著性,假设存在一致的模式/信号。事实上,17个聚合值中有16个是正值。这本身在零假设下发生的概率非常低(在这种情况下,每个估计的符号应该随机为正或负)。可以使用 prop.test(16, 17)
获得这个的简单符号检验。
英文:
The type of aggregations discussed at that link is a specific case where one would like to create an aggregated dataset (using information from the multilevel model) such that a simple meta-analysis of the aggregated values (using an equal-effects model) produces the same result as the multilevel model. This requires calculating the sampling variances of the aggregated values in such a way that they incorporate the heterogeneity stemming from the multilevel model. As a result, CIs get wider, also for the studies that only supply a single estimate to the model.
As for the fact that most CIs around the aggregated values include 0, while the CI around the summary estimate excludes 0: That is kind of the idea behind a meta-analysis. If individual estimates are imprecise, then the pooled estimate can still be sufficiently precise to achieve statistical significance, assuming that there is a consistent pattern/signal. In fact, 16 out of the 17 aggregated values are positive. That in itself has a very low probability of occurring under the null hypothesis (in which case the sign of each estimate should either be randomly positive or negative). A simple sign test of this can be obtained with prop.test(16, 17)
.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论