英文:
How to use MLlfow to load the logged/saved model in Azure ML?
问题
我想部署经过训练的 ML 模型通过 AZURE ML 在线端点。
我已经在工作空间上注册了我的模型。
现在当我尝试使用 cutome score.py 来加载模型时,我得到以下错误 -
错误信息显示在 /azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/azureml_inference_server_http/server/user_script.py
中,需要在其中更新 map_location=torch.device('cpu')
。但是 mlflow.pyfunc.load_model()
没有参数可以访问 map_location
,因此需要在代码中找到合适的位置进行更新。
英文:
I want to deploy the trained ML model via AZURE ML online endppoints.
I have already registered my model on the workspace.
Now I am getting following error when I am trying to load the model using cutome score.py for mlflow.pyfunc.load_model()
This is my code -
model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "use-case1-model")
model = mlflow.pyfunc.load_model(model_path)
score.py
import logging
import os
import json
import mlflow
from io import StringIO
from mlflow.pyfunc.scoring_server import infer_and_parse_json_input, predictions_to_json
import sys
from time import strftime, localtime
from collections import Counter
from pytorch_transformers import BertTokenizer
import random
import numpy as np
import torch
from tqdm import tqdm
def init():
global model
# "model" is the path of the mlflow artifacts when the model was registered. For automl
# models, this is generally "mlflow-model".
model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "use-case1-model")
model = mlflow.pyfunc.load_model(model_path)
logging.info("Init complete")
def run(raw_data):
data = json.loads(raw_data)
title = json.dumps(data["title"])
att = json.dumps(data["attributes"])
output = model.predict([tensor_t,tensor_a])
predict_list = output.tolist()[0]
result = StringIO()
predictions_to_json(predict_list,result)
return result.getvalue()
Error that I am getting -
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/azureml_inference_server_http/server/user_script.py", line 117, in invoke_init
self._user_init()
File "/var/azureml-app/dependencies/score.py", line 21, in init
model = mlflow.pyfunc.load_model(model_path)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/mlflow/pyfunc/__init__.py", line 735, in load_model
model_impl = importlib.import_module(conf[MAIN])._load_pyfunc(data_path)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/mlflow/pytorch/__init__.py", line 735, in _load_pyfunc
return _PyTorchWrapper(_load_model(path, **kwargs))
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/mlflow/pytorch/__init__.py", line 643, in _load_model
return torch.load(model_path, **kwargs)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 809, in load
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 1172, in _load
result = unpickler.load()
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 1142, in persistent_load
typed_storage = load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 1116, in load_tensor
wrap_storage=restore_location(storage, location),
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 217, in default_restore_location
result = fn(storage, location)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 182, in _cuda_deserialize
device = validate_cuda_device(location)
File "/azureml-envs/azureml_9a3b1e0a66d72d612aebc12b4a285f72/lib/python3.9/site-packages/torch/serialization.py", line 166, in validate_cuda_device
raise RuntimeError('Attempting to deserialize object on a CUDA '
RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
How and where can I update map_location=torch.device('cpu') ? mlflow.pyfunc.load_model() doesnt have a parameter to access map_location and as the packages is installed in docker i cannot make changes to serilaization.py
答案1
得分: 0
根据错误日志,您正在尝试在CUDA设备上反序列化一个对象,但torch.cuda.is_available()
返回False,这是因为您在仅CPU的机器上运行。要解决此问题,您需要更新torch.load
函数以指定map_location=torch.device('cpu')
来将存储映射到CPU。
由于mlflow.pyfunc.load_model()
函数没有map_location
参数,您可以使用一个**kwargs
参数,该参数可以传递任何额外的关键字参数给torch.load()
函数。
要解决这个问题,在您的score.py
文件中添加*{'map_location': torch.device('cpu')}
。
model = mlflow.pyfunc.load_model(model_path, *{'map_location': torch.device('cpu')})
或者使用下面的代码(更新后的解决方案):
model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))
示例:
import mlflow
import torch
path = "./deploy/credit_defaults_model/"
model = mlflow.pyfunc.load_model(path, *{'map_location': torch.device('cpu')})
英文:
As per the error logs, you are attempting to deserialize an object on a CUDA device, but torch.cuda.is_available()
is returning False, which is due to running on a CPU only machine. To resolve this issue, you need to update the torch.load
function to specify map_location=torch.device('cpu')
to map the storages to the CPU.
Since the mlflow.pyfunc.load_model()
function does not have a map_location
argument, you can use a **kwargs
argument that can pass any additional keyword arguments to the torch.load()
function.
To solve the issue, add *{'map_location': torch.device('cpu')}
in your score.py
file.
model = mlflow.pyfunc.load_model(model_path, *{'map_location': torch.device('cpu')})
or Use below code:(Updated solution)
model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))
Example:
import mlflow
import torch
path="./deploy/credit_defaults_model/"
model = mlflow.pyfunc.load_model(path, *{'map_location': torch.device('cpu')})
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论