英文:
Deprecation Warning Use DataSource instead of MLDataTable when initializing in Create ML
问题
我在Xcode 14.3 Playgrounds中运行以下代码。我使用的是macOS Ventura 13.1。
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataTable = try MLDataTable(contentsOf: csvFile)
let (classifierEvaluationTable, classifierTrainingTable) = dataTable.randomSplit(by: 0.20, seed: 5)
let classifier = try MLTextClassifier(trainingData: classifierTrainingTable, textColumn: "text", labelColumn: "sentiment")
我收到以下警告:
'init(trainingData:textColumn:labelColumn:parameters:)'在macOS 13.0中已被弃用:在初始化时使用DataSource而不是MLDataTable。
问题在于没有关于如何创建DataFrame或DataSource的文档。
英文:
I am running the following code in Xcode 14.3 Playgrounds. I am using macOS Ventura 13.1.
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataTable = try MLDataTable(contentsOf: csvFile)
let (classifierEvaluationTable, classifierTrainingTable) = dataTable.randomSplit(by: 0.20, seed: 5)
let classifier = try MLTextClassifier(trainingData: classifierTrainingTable, textColumn: "text", labelColumn: "sentiment")
I get the following warning:
'init(trainingData:textColumn:labelColumn:parameters:)' was deprecated in macOS 13.0: Use DataSource instead of MLDataTable when initializing.
The problem is that there is no documentation on how to create DataFrame or DataSource.
答案1
得分: 2
处理这个情况上的一些时间。我们可以使用DataFrame,这样就可以避免警告。目前还没有被弃用。
有一个示例,我找到了如何重写它的方法。
以前的版本:
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataTable = try MLDataTable(contentsOf: csvFile)
let (classifierEvaluationTable, classifierTrainingTable) = dataTable.randomSplit(by: 0.20, seed: 5)
let classifier = try MLTextClassifier(trainingData: classifierTrainingTable, textColumn: "text", labelColumn: "sentiment")
更新后:
此外,添加这个
import TabularData
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataFrame = DataFrame(contentsOfCSVFile: csvFile)
let (classifierEvaluationSlice, classifierTrainingSlice) = dataFrame.split(by: 0.20, seed: 5)
let classifierTrainingFrame = DataFrame(classifierTrainingSlice)
let classifier = try MLTextClassifier(trainingData: classifierTrainingFrame, textColumn: "text", labelColumn: "sentiment")
另外,我们可以比较和打印指标,并保存文件:
let classifierEvaluationFrame = DataFrame(classifierEvaluationSlice)
let metrics = model.evaluation(on: classifierEvaluationFrame, textColumn: "text", labelColumn: "sentiment")
print(metrics.classificationError)
let modelPath = URL(filePath: "YourPath/YourModelName.mlmodel")
try model.write(to: modelPath)
英文:
Handling some time on that case. We can use DataFrame, so the warnings will avoid. At this time it's not deprecated.
There is an example, what I found how to rewrite this.
Previous version:
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataTable = try MLDataTable(contentsOf: csvFile)
let (classifierEvaluationTable, classifierTrainingTable) = dataTable.randomSplit(by: 0.20, seed: 5)
let classifier = try MLTextClassifier(trainingData: classifierTrainingTable, textColumn: "text", labelColumn: "sentiment")
Updated:
additionally add this
import TabularData
let csvFile = Bundle.main.url(forResource: "all-data", withExtension: "csv")!
let dataFrame = DataFrame(contentsOfCSVFile: csvFile)
let (classifierEvaluationSlice, classifierTrainingSlice) = dataFrame.split(by: 0.20, seed: 5)
let classifierTrainingFrame = DataFrame(classifierTrainingSlice)
let classifier = try MLTextClassifier(trainingData: classifierEvaluationFrame, textColumn: "text", labelColumn: "sentiment"))
Additionally we can compare & print metrics and save file:
let classifierEvaluationFrame = DataFrame(classifierEvaluationSlice)
let metrics = model.evaluation(on: classifierEvaluationFrame, textColumn: "text", labelColumn: "sentiment"))
print(metrics.classificationError)
let modelPath = URL(filePath: "YourPath/YourModelName.mlmodel")
try model.write(to: modelPath)
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论