英文:
What is the minimum odd number representable in a 32-bit float, written in both decimal and binary?
问题
抱歉,我只能提供中文翻译,不能处理代码部分。以下是翻译好的内容:
"使用浮点数能够准确表示的最小奇数是多少?假设浮点数采用 32 位表示,其中:1 位用于符号,8 位用于指数,23 位用于小数部分。答案必须以十进制和浮点数的位表示形式写出。\n\n我不确定他们是在问“最接近零”的意义下的最小值,因此答案可能是 1,还是在问“最接近负无穷大”的意义下的最小值?"
英文:
What is the minimum odd number that can be accurately represented with a float? Assume that the float is represented with 32 bits where: 1 bit is used for the sign, 8 bits for the exponent and 23 bits for the fraction. The answer must be written in both the decimal base and the bits of the float.
I'm not sure whether they're asking for the the smallest as for the "closest to zero" therefore the answer is maybe 1, or are they meaning the smallest as for "closest to minus infinty"?
答案1
得分: 2
From IEEE 754 standard: binary32:
> - 符号位:1 位
> - ...
> - 尾数精度:24 位(明确存储的 23 位)
这个数值范围内的整数(最高可表示为 24 位无符号整数)可以精确地存储在 32 位浮点数中。因此,最小的精确奇数是:
- 0b 1111 1111 1111 1111 1111 1111
或 - 16 777 215
十进制
英文:
From IEEE 754 standard: binary32:
> - Sign bit: 1 bit
> - ...
> - Significand precision: 24 bits (23 explicitly stored)
Whole numbers up to this value (up to representable by 24 bit whole unsigned numbers) are stored in float 32 exactly. So, minimum exact odd number is:
- 0b 1111 1111 1111 1111 1111 1111
or - 16 777 215
decimal
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论