Separate symbolic matrix in a sum of matrices sympy: 将符号矩阵分离成一组矩阵 sympy:

huangapple go评论56阅读模式
英文:

Separate symbolic matrix in a sum of matrices sympy

问题

我有一个符号矩阵,其中元素是不同的函数。这是一个示例:

import sympy as sp

a, b, c, d = sp.symbols('a, b, c, d')

M = sp.Matrix([[a, b], [c, d]])

我想将M重写为未知矩阵写法的和,就像这样:

M = a * sp.Matrix([[1, 0], [0, 0]]) + b * sp.Matrix([[0, 1], [0, 0]]) + c * sp.Matrix([[0, 0], [1, 0]]) + d * sp.Matrix([[0, 0], [0, 1]])

或者作为不同函数的列表:

[a * sp.Matrix([[1, 0], [0, 0]]), b * sp.Matrix([[0, 1], [0, 0]]), c * sp.Matrix([[0, 0], [1, 0]]), d * sp.Matrix([[0, 0], [0, 1]])]

我的矩阵类似于这样:

Separate symbolic matrix in a sum of matrices sympy:
将符号矩阵分离成一组矩阵 sympy:

英文:

I have a symbolic matrix where the elements are different functions. this is an example:

import sympy as sp

a,b,c,d = sp.symsbols('a, b, c, d')

M = sp.Matrix([[a, b], [c, d]])

I would like to rewrite the M as sum of matrices without knowing how the matrix are written, like this:

M = a*sp.Matrix([1,0],[0,0]) + b*sp.Matrix([0,1],[0,0]) +c*sp.Matrix([0,0],[1,0])+ d*sp.Matrix([,0],[0,1])

or a list of the different functions:

[a*sp.Matrix([1,0],[0,0]), b*sp.Matrix([0,1],[0,0]) ,c*sp.Matrix([0,0],[1,0]), d*sp.Matrix([,0],[0,1])]

My matrix are some thing like this:

Separate symbolic matrix in a sum of matrices sympy:
将符号矩阵分离成一组矩阵 sympy:

答案1

得分: 4

以下是翻译好的部分:

假设:

  1. 您的矩阵中的所有元素都是乘法(因此是Mul类型)。
  2. i是虚数单位。

您可以这样做:

M = Matrix([[2 * a * I, 4 * b], [3 * c, a]])
matrices = []
for s in M.free_symbols:
    term = MatMul(s, M.applyfunc(lambda t: t.coeff(s)), evaluate=False)
    matrices.append(term)
    print(term)
# 输出:
b*Matrix([[0, 4], [0, 0]])
a*Matrix([[2*I, 0], [  0, 1]])
c*Matrix([[0, 0], [3, 0]])

首先,我们循环遍历矩阵中包含的自由符号。您还可以手动插入符号列表... 使用M.applyfunc,我们对矩阵的所有元素应用某个函数。根据前述的假设,我们正在检索矩阵的每个元素的特定符号的系数。请注意MatMul内部的evaluate=False:如果将其更改为True,则Sympy将评估乘法,导致一个带有符号的单个矩阵。

最终,您可以将这些项相加,例如:

MatAdd(*matrices, evaluate=False)
英文:

Assuming that:

  1. all the element of your matrices are multiplications (hence, of type Mul).
  2. i is the imaginary number.

You can do something like this:

M = Matrix([[2 * a * I, 4 * b], [3 * c, a]])
matrices = []
for s in M.free_symbols:
    term = MatMul(s, M.applyfunc(lambda t: t.coeff(s)), evaluate=False)
    matrices.append(term)
    print(term)
# out:
b*Matrix([[0, 4], [0, 0]])
a*Matrix([[2*I, 0], [  0, 1]])
c*Matrix([[0, 0], [3, 0]])

First, we loop over the free symbols contained in the matrix. You could also manually insert a list of symbols... With M.applyfunc we apply some function to all elements of the matrix. With the aforementioned assumptions, we are retrieving the coefficients of a particular symbol for each element of the matrix. Note the evaluate=False inside MatMul: if you change it to True, then Sympy evaluates the multiplication, resulting in a single matrix with the symbol inside it.

Eventually, you can add the terms together, for example:

MatAdd(*matrices, evaluate=False)

huangapple
  • 本文由 发表于 2023年5月22日 22:29:04
  • 转载请务必保留本文链接:https://go.coder-hub.com/76307223.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定