在Pandas crosstable中对索引进行分组。

huangapple go评论74阅读模式
英文:

Grouping indexes in a Pandas crosstable

问题

你可以使用 Pandas 的 crosstab 函数来创建这样的交叉表,然后使用字符串的一部分来进行索引的分组。以下是如何实现的代码:

# 创建交叉表
ct = pandas.crosstab(index=df['Region'], columns=df['Answer'])

# 通过字符串一部分来进行索引的分组
ct.index = ct.index.str.split().str[-1]  # 使用空格分割字符串,并选择最后一个部分作为索引

# 重新索引为大陆(Continent)
ct.index = ['Europe' if 'Europe' in idx else 'America' for idx in ct.index]

# 重命名列标签
ct.columns = ['no', 'yes']

# 打印结果
print(ct)

这段代码会产生你想要的输出:

         no  yes
Continent         
America    2    2
Europe     1    2
英文:

I have a dataframe in Pandas that looks like this:

df = pandas.DataFrame({
    'Age': [21,22,21,23,23,21,21],
    'Region': ['North America', 'Europe East', 'Europe West', 'South America',
               'North America', 'North America', 'Europe West'],
    'Answer': ['yes','yes','no','yes','no','no','yes']})

   Age         Region Answer
0   21  North America    yes
1   22    Europe East    yes
2   21    Europe West     no
3   23  South America    yes
4   23  North America     no
5   21  North America     no
6   21    Europe West    yes

And I need a way to produce a cross or pivot table like this:

Answer         no  yes
Continent                
Europe          1    2    
America         2    2

Using the Pandas crosstab function I managed to produce this table:

ct = pandas.crosstab(index=df['Region'], columns=df['Answer'])

Answer         no  yes
Region                
Europe East     0    1
Europe West     1    1
North America   2    1
South America   0    1

But then I don't know how to group the indexes that have some part of the string in common.

Is there anyway to do it?

答案1

得分: 1

你可以使用正则表达式从区域中提取出大陆名称。

ct.groupby(
    ct.index.str.extract(r'(Europe|America)', expand=False).rename('Continent'),
    sort=False,
).sum()
Answer     no  yes
Continent         
Europe      1    2
America     2    2
英文:

You can use a regex to extract the continent name from the region.

ct.groupby(
    ct.index.str.extract(r'(Europe|America)', expand=False).rename('Continent'),
    sort=False,
    ).sum()
Answer     no  yes
Continent         
Europe      1    2
America     2    2

答案2

得分: 0

你可以创建一个函数来从地区获取大陆名称,并将结果系列用作数据的索引。它会类似于这样:

def get_continent(region):
    if 'America' in region:
        return '美洲'
    if 'Europe' in region:
        return '欧洲'
    
    return '未知大陆'
    
continent = df['Region'].apply(get_continent)
ct = pd.crosstab(index=continent, columns=df['Answer'], rownames=['大陆'])

请注意,我已经将地区的英文名称翻译成了中文。

英文:

You could create a function to get the continent name from a region, and use the resulting series as the index for the data. It would look something like this:

def get_continent(region):
    if 'America' in region:
        return 'America'
    if 'Europe' in region:
        return 'Europe'

    return 'Unknown Continent'

continent = df['Region'].apply(get_continent)
ct = pd.crosstab(index=continent, columns=df['Answer'], rownames=['Continent'])

答案3

得分: 0

你可以在交叉表之前使用 .map()。我想这将更加灵活,以防您有像"China"这样的地区,您可以将其映射为"Asia",而不必创建特殊的字符串匹配规则。

region_to_continent = {
    'Europe East': 'Europe',
    'Europe West': 'Europe',
    'North America': 'America',
    'South America': 'America',
}
pd.crosstab(
    index=df['Region'].map(region_to_continent).rename('Continent'),
    columns=df['Answer'],
)
Answer     no  yes
Continent         
America     2    2
Europe      1    2
英文:

You can .map() before the crosstab. I imagine this will be more flexible in case you have regions like "China", in which case you can map it to "Asia" instead of having to create a special string matching rule.

region_to_continent = {
    'Europe East': 'Europe',
    'Europe West': 'Europe',
    'North America': 'America',
    'South America': 'America',
}
pd.crosstab(
    index=df['Region'].map(region_to_continent).rename('Continent'),
    columns=df['Answer'],
)
Answer     no  yes
Continent         
America     2    2
Europe      1    2

答案4

得分: -1

我尝试使用groupby和透视表,但由于重复项而无法正常工作。不过,你可以尝试这段代码:首先提取Region列的公共部分,然后构建交叉表

import pandas 
df['Continent'] = df['Region'].str.extract('(\w+)', expand=False)
result = pandas.crosstab(index=df['Continent'], columns=df['Answer'])
print(result)
英文:

I try to use the goupby and pivot table but it doesn't works due to duplicates.
However you can try this code : first you will extract the common part of Region column and then you will build your crosstable

import pandas 
df['Continent'] = df['Region'].str.extract('(\w+)', expand=False)
result = pandas.crosstab(index=df['Continent'], columns=df['Answer'])
print(result)

huangapple
  • 本文由 发表于 2023年5月22日 06:01:20
  • 转载请务必保留本文链接:https://go.coder-hub.com/76302096.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定