N个数的乘积,答案不正确,可能会溢出?

huangapple go评论72阅读模式
英文:

Product of N numbers, incorrect answer, possible overflow?

问题

我正在尝试解决问题“前n个数字的乘积”。

   long ans=1;

    for(int i=1;i<=n;i++){
        ans = ans*i;
    }
    return ans % (1000000007) ;

对于较大的n,我得到了不正确的结果,我怀疑可能发生了溢出。我应该如何解决这个问题?

英文:

I am trying to solve the problem "product of first n numbers"

   long ans=1;

	for(int i=1;i&lt;=n;i++){
		ans = ans*i;
	}
	return ans % (1000000007) ;

I am incorrect result for large n, I suspect possible overflow. How do I go about solving it?

答案1

得分: 5

如果你需要写 `answer % 1000000007`,你可以(我猜你应该)在每次 `for` 循环中都使用 `%` 运算符。

long ans = 1;
long p = 1000000007;

for (int i = 0; i < n; i++)
{
ans = (ans * i) % p;
}

return ans;


如果这还不够,你可以尝试这样做:

long ans = 1;
long p = 1000000007;

for (int i = 0; i < n; i++)
{
ans = ((ans % p) * (i % p)) % p;
}

return ans;

英文:

If you have to write answer % 1000000007, you can (and I guess you should) use % operator every time in for loop.

long ans = 1;
long p = 1000000007;

for (int i = 0; i &lt; n; i++)
{
    ans = (ans * i) % p;
}

return ans;

If this is not enough, you can try this:

long ans = 1;
long p = 1000000007;

for (int i = 0; i &lt; n; i++)
{
    ans = ((ans % p) * (i % p)) % p;
}

return ans;

答案2

得分: 0

这里是 BigInteger 解法:

int p = 1_000_000_007;

BigInteger fact = BigInteger.TWO;
int N = 50;
for (int i = 3; i &lt; N; i++) {
     fact = fact.multiply(BigInteger.valueOf(i));
}
System.out.println(fact.mod(BigInteger.valueOf(p)));

打印结果:

726372166

要在不使用 BigInteger 的情况下解决此问题,可以使用以下关系式:

(a mod n) * (b mod n) = ab mod n.

可以适用于更大范围的整数,可以这样做:

long mod = 2;
int N = 50;
for (int i = 3; i &lt; N; i++) {
    mod = (mod * i) % p;
}
System.out.println(mod);

打印结果:

726372166

注意:1_000_000_007 是一个素数,因此可以确保任何产品都不会将该值作为因子。如果 N &gt;= p,则所有后续结果都将为 0,即使首先使用 BigInteger 计算产品,因为当产品被 p 除时,余数将为零。

英文:

First, here is the BigInteger solution.

int p = 1_000_000_007;

BigInteger fact = BigInteger.TWO;
int N = 50;
for (int i = 3 ;i &lt; N; i++) {
     fact = fact.multiply(BigInteger.valueOf(i));
}
System.out.println(fact.mod(BigInteger.valueOf(p)));

prints

726372166

To solve this without using BigInteger, one can use the relationship that says that

 (a mod n) * (b mod n) = ab mod n.

Check out the proof here

Since the above can be applied to a larger range of integers, one can do the following:

long mod = 2;
int N = 50;
for (int i = 3; i &lt; N; i++) {
    mod = (mod * i) % p;
}
System.out.println(mod);

prints

726372166

Note: 1_000_000_007 is a prime number and thus guarantees no product above will ever have that value as a factor. If N &gt;= p then all subsequent results will be 0, even if the product is first computed using BigInteger, because the remainder will be zero when the product is divided by p

huangapple
  • 本文由 发表于 2023年5月21日 18:25:42
  • 转载请务必保留本文链接:https://go.coder-hub.com/76299415.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定