在Julia中无需使用递归绘制Koch曲线。

huangapple go评论85阅读模式
英文:

Drawing Koch's curve without recursion in Julia

问题

I want to draw a Koch curve in Julia without recursion. My strategy is to divide the given line into three segments using the segPoints function:

  1. function seg_points(startPoint, endPoint, n=3)
  2. mids = []
  3. for i in 1:n-1
  4. push!(mids, i/n * [startPoint[1]+endPoint[1], startPoint[2]+endPoint[2]])
  5. end
  6. return mids
  7. end

Then, the function polygon is used to find the top third point:

  1. function polygon(p1, p2, n=3)
  2. x = p2[1]-p1[1]
  3. y = p2[2]-p1[2]
  4. P3 = p1 + [x * cos(pi/3) - y * sin(pi/3), x * sin(pi/3) + y * cos(pi/3)]
  5. return P3
  6. end

Finally, the function koch_curve is used to draw the fractal:

  1. function koch_curve(order::Int, startPoint = [0.0,0.0], endPoint = [1.0,0.0])
  2. pts=[startPoint, endPoint]
  3. for i in 1:order
  4. order_points =[]
  5. for j in 2:length(pts)
  6. a = pts[j-1]
  7. b = pts[j]
  8. c, d = seg_points(a, b)
  9. e = polygon(c, d)
  10. push!(order_points, c, d, e)
  11. end
  12. for pt in order_points
  13. push!(pts, pt)
  14. end
  15. end
  16. return pts
  17. end

But it doesn't work. The output plot is this with order=5:
在Julia中无需使用递归绘制Koch曲线。

英文:

I want to draw a Koch curve in Julia without recursion. My strategy is to divide the given line into three segments using the segPoints function:

  1. function seg_points(startPoint, endPoint, n=3)
  2. mids = []
  3. for i in 1:n-1
  4. push!(mids, i/n * [startPoint[1]+endPoint[1], startPoint[2]+endPoint[2]])
  5. end
  6. return mids
  7. end

Then, the function polygon is used to find the top third point.

  1. function polygon(p1, p2, n=3)
  2. x = p2[1]-p1[1]
  3. y = p2[2]-p1[2]
  4. P3 = p1 + [x * cos(pi/3) - y * sin(pi/3), x * sin(pi/3) + y * cos(pi/3)]
  5. return P3
  6. end

Finally in the function koch_curve is to draw the fractal:

  1. function koch_curve(order::Int, startPoint = [0.0,0.0], endPoint = [1.0,0.0])
  2. pts=[startPoint, endPoint]
  3. for i in 1:order
  4. order_points =[]
  5. for j in 2:length(pts)
  6. a = pts[j-1]
  7. b = pts[j]
  8. c, d = seg_points(a, b)
  9. e = polygon(c, d)
  10. push!(order_points, c, d, e)
  11. end
  12. for pt in order_points
  13. push!(pts, pt)
  14. end
  15. end
  16. return pts
  17. end

But it doesn't work. The output plot is this with order=5:
在Julia中无需使用递归绘制Koch曲线。

答案1

得分: 2

以下是代码的翻译:

首先,中点没有被正确计算。如果您想找到等分线段的点,应该使用加权平均值:

  1. function seg_points(startPoint, endPoint, n=3)
  2. mids = []
  3. for i in 1:n-1
  4. push!(mids, (1 - i/n) * startPoint + i/n * endPoint)
  5. end
  6. return mids
  7. end

然后,您需要按正确的顺序将这些点添加,因为线段由相邻的点定义:

  1. function koch_curve(order::Int, startPoint = [0.0,0.0], endPoint = [1.0,0.0])
  2. pts=[startPoint, endPoint]
  3. for i in 1:order
  4. order_points =[]
  5. for j in 2:length(pts)
  6. a = pts[j-1]
  7. b = pts[j]
  8. c, d = seg_points(a, b)
  9. e = polygon(c, d)
  10. # 不要推入b,因为这个b等于下一次循环的a:
  11. push!(order_points, a, c, e, d)
  12. end
  13. push!(order_points, pts[end]) # 最后的b
  14. pts = order_points
  15. end
  16. return pts
  17. end
英文:

First thing is the midpoints aren't being computed correctly. A weighted average should be used if you want to find the points that equally divide a segment:

  1. function seg_points(startPoint, endPoint, n=3)
  2. mids = []
  3. for i in 1:n-1
  4. push!(mids, (1 - i/n) * startPoint + i/n * endPoint)
  5. end
  6. return mids
  7. end

Then you need to push the points in the correct order, since lines are defined by adjacent points:

  1. function koch_curve(order::Int, startPoint = [0.0,0.0], endPoint = [1.0,0.0])
  2. pts=[startPoint, endPoint]
  3. for i in 1:order
  4. order_points =[]
  5. for j in 2:length(pts)
  6. a = pts[j-1]
  7. b = pts[j]
  8. c, d = seg_points(a, b)
  9. e = polygon(c, d)
  10. # don't push b, since this b = the next loop iter's a:
  11. push!(order_points, a, c, e, d)
  12. end
  13. push!(order_points, pts[end]) # the last b
  14. pts = order_points
  15. end
  16. return pts
  17. end

huangapple
  • 本文由 发表于 2023年5月21日 00:44:44
  • 转载请务必保留本文链接:https://go.coder-hub.com/76296310.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定