Exhaustive enumeration technique in Python to find the square root of a number.

huangapple go评论86阅读模式
英文:

Exhaustive enumeration technique in Python to find the square root of a number

问题

以下是您要翻译的内容:

是否有比以下方法更好的技巧来穷举计算介于0和1之间的数的平方根?我尝试过实现牛顿法,但由于其二次收敛,使用它将不合理。我还了解到我可以使用 `math.sqrt`。

```python
x = 0.25
epsilon = 0.01
step = epsilon ** 2
guess = 0
ans = 0.0

while abs(ans ** 2 - x) >= epsilon and ans * ans <= x:
  ans += step
  guess += 1

print(f"number of guesses = {guess}")
if abs(ans ** 2 - x) >= epsilon:
  print(f"Failed on square root of {x}")
else:
  print(f"{ans} is close to the square root of {x}")

在这个实现中,我得到以下输出:

猜测次数 = 4899
0.48989999999996237 接近于0.25的平方根

我应该如何考虑同时具有时间和空间复杂性方面的高效近似解?


<details>
<summary>英文:</summary>

Is there a better technique than the following to exhaustively enumerate the square root of numbers between 0 and 1? I have tried to implement Newton&#39;s method, but as it converges quadratically, using it would be unreasonable. I also understand that I can use `math.sqrt`.


```python
x = 0.25
epsilon = 0.01
step = epsilon ** 2
guess = 0
ans = 0.0

while abs(ans ** 2 - x) &gt;= epsilon and ans * ans &lt;= x:
  ans += step
  guess += 1

print(f&quot;number of guesses = {guess}&quot;)
if abs(ans ** 2 - x) &gt;= epsilon:
  print(f&quot;Failed on square root of {x}&quot;)
else:
  print(f&quot;{ans} is close to the square root of {x}&quot;)

In this implementation, I get the following output:

number of guesses = 4899
0.48989999999996237 is close to the square root of 0.25

How should I be thinking of approximation solutions that are also efficient in terms of time and space complexity?

答案1

得分: 1

将估计值增加一个小值(epsilon)并不是牛顿法通常的实现方式。

以下是一个返回估计值和猜测次数的版本:

def mySqrt(a, dp=4):
    guesses = 0
    if a > 0 and dp > 0:
        epsilon = 0.1 ** dp
        x = a / 2 # 初始的任意估计值
        while True:
            guesses += 1
            y = (x + a / x) / 2
            if abs(y - x) <= epsilon:
                return y, guesses
            x = y
    return float('nan'), 0

输出:

(0.7071067811865475, 6)
(0.7071067812624661, 5)

因此,在这种情况下,对于0.5的平方根分别在6和5次迭代中以6和4(默认值)位小数的精度进行了估计。

英文:

Adding a small value (epsilon) to the estimate is not how Newton's method is usually implemented.

Here's a version that returns the estimate and the number of guesses made:

def mySqrt(a, dp=4):
    guesses = 0
    if a &gt; 0 and dp &gt; 0:
        epsilon = 0.1 ** dp
        x = a / 2 # initial arbitrary estimate
        while True:
            guesses += 1
            y = (x + a / x) / 2
            if abs(y - x) &lt;= epsilon:
                return y, guesses
            x = y
    return float(&#39;nan&#39;), 0

print(mySqrt(0.5, dp=6))
print(mySqrt(0.5))

Output:

(0.7071067811865475, 6)
(0.7071067812624661, 5)

Thus, in this case, the square root of 0.5 is estimated to an accuracy of 6 and 4 (the default) decimal places in just 6 and 5 iterations respectively

huangapple
  • 本文由 发表于 2023年5月18日 01:51:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/76274924.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定