将具有相同ID的行合并为同一行。

huangapple go评论74阅读模式
英文:

combine rows with the same IDs into the same row

问题

I understand your request. Here's the translated code part without any additional content:

我明白你的请求以下是翻译好的代码部分没有任何额外内容

我有一个包含600行的数据集数据有一个主要的ID=版本(Version)和第二个ID=任务(Task)数据如下所示

我想要更改格式使得属于同一个版本(Version)的任务(Task)在同一行中如下所示

请注意,这只是代码的翻译部分,不包含任何其他内容。如果需要更多帮助,请告诉我。

英文:

I have a dataset with 600 rows. the data has one main ID= Version and second ID= Task. Data looks like this:

 Version  Task  Concept  Att 1 -  Att 2 -
       1     1        1        3        2
       1     1        2        1        1
       1     2        1        2        3
       1     2        2        1        2
       1     3        1        2        3
       1     3        2        3        1
       2     1        1        2        1
       2     1        2        3        2
       2     2        1        2        2
       2     2        2        1        3
       2     3        1        3        1
       2     3        2        1        3

I would like to change the format, so to have "Task" which belongs to the same "Version" in the same row like this:

 Version  Task  Concept  Att 1 -  Att 2 -  Version  Task  Concept  Att 1 -  Att 2 -
       1     1        1        3        2        1     1        2        1        1
       1     2        1        2        3        1     2        2        1        2
       1     3        1        2        3        1     3        2        3        1
       2     1        1        2        1        2     1        2        3        2
       2     2        1        2        2        2     2        2        1        3
       2     3        1        3        1        2     3        2        1        3

I have tried different things like groupby, pivot but I cannot find the right solution

答案1

得分: 0

I think a pivot is the clean way to reshape (df.pivot(index=['Version', 'Task'], columns='Concept'), optionally with flattening the columns MultiIndex).

That said if you really want to duplicate the columns, you could combine a groupby and concat:

out = (pd.concat([g.set_index(['Version', 'Task'], drop=False)
                 for k, g in df.groupby('Concept')], axis=1)
         .reset_index(drop=True)
      )

Output:

   Version  Task  Concept  Att 1 -  Att 2 -  Version  Task  Concept  Att 1 -  Att 2 -
0        1     1        1        3        2        1     1        2        1        1
1        1     2        1        2        3        1     2        2        1        2
2        1     3        1        2        3        1     3        2        3        1
3        2     1        1        2        1        2     1        2        3        2
4        2     2        1        2        2        2     2        2        1        3
5        2     3        1        3        1        2     3        2        1        3
英文:

I think a pivot is the clean way to reshape (df.pivot(index=['Version', 'Task'], columns='Concept'), optionally with flattening the columns MultiIndex).

That said if you really want to duplicate the columns, you could combine a groupby and concat:

out = (pd.concat([g.set_index(['Version', 'Task'], drop=False)
                 for k, g in df.groupby('Concept')], axis=1)
         .reset_index(drop=True)
      )

Output:

   Version  Task  Concept  Att 1 -  Att 2 -  Version  Task  Concept  Att 1 -  Att 2 -
0        1     1        1        3        2        1     1        2        1        1
1        1     2        1        2        3        1     2        2        1        2
2        1     3        1        2        3        1     3        2        3        1
3        2     1        1        2        1        2     1        2        3        2
4        2     2        1        2        2        2     2        2        1        3
5        2     3        1        3        1        2     3        2        1        3

huangapple
  • 本文由 发表于 2023年5月17日 19:32:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/76271626.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定