英文:
Module ‘langchain.vectorstores.pinecone’ has no attribute ‘init’
问题
当我尝试安装 'pinecone' 时,我收到了错误消息 "找不到满足 pinecone 要求的版本"。
因此,我安装了 'pinecone-client'。
以下是我的代码:
from langchain.vectorstores import pinecone
pinecone.init(api_key="API_KEY", environment="asia-northeast1-gcp")
我收到以下错误消息:
File “C:\Users\Luke\PycharmProjects\Langchainv1\Langchain_Pinecone.py”, line 2, in
pinecone.init(api_key="API_KEY", environment="asia-northeast1-gcp")
AttributeError: module ‘langchain.vectorstores.pinecone’ has no attribute ‘init’
这个错误与我无法安装 'pinecone' 而安装 'pinecone-client' 有关吗?根据 Pinecone 的文档(https://docs.pinecone.io/docs/python-client),似乎并不是这个原因。
感谢任何帮助。我已重新安装了 'pinecone-client',但仍感到困惑。
我正在尝试将文本嵌入到 Pinecone 中,以供 Langchain 查询使用。不幸的是,我甚至无法让 pinecone 正确加载。
英文:
When I attempted to install ‘pinecone’ I received the error “could not find a version that satisfies the requirement pinecone”
So instead, I installed pinecone-client
Here is my code:
from langchain.vectorstores import pinecone
pinecone.init(api_key=“API_KEY”, environment=“asia-northeast1-gcp”)
I receive the following error:
File “C:\Users\Luke\PycharmProjects\Langchainv1\Langchain_Pinecone.py”, line 2, in
pinecone.init(api_key=“API_KEY”, environment=“asia-northeast1-gcp”)
AttributeError: module ‘langchain.vectorstores.pinecone’ has no attribute ‘init’
Does this error have anything to do with the fact that I was unable to install pinecone but installed pinecone-client? That doesnt appear to be the case using Pinecones documentation: https://docs.pinecone.io/docs/python-client
I appreciate any help. I have reinstalled pinecone-client and am a bit stumped.
I am attempting to embed text to pinecone to use for queries using Langchain. Unfortunately, I cannot even get to the point where pinecone is loading properly.
答案1
得分: 1
从langchain.vectorstores中正确的导入是`import pinecone`。
英文:
from langchain.vectorstores import pinecone
The correct import here is import pinecone
.
答案2
得分: 1
以下是翻译好的内容:
有两个步骤来使用LangChain设置Pinecone:(1) 使用pinecone
模块连接到Pinecone客户端并进行身份验证,然后(2) 使用LangChain提供的Pinecone
接口。
您已经完成了一些步骤,@NickODell指出了导入Pinecone客户端的正确方法。本答案演示了这个过程中两个步骤的快速步骤。
步骤1:初始化/验证Pinecone客户端
#!pip install pinecone-client
import pinecone
pinecone.init(
api_key=os.environ["PINECONE_API_KEY"],
environment=os.environ["PINECONE_ENV"]
)
pc_index_name = "在这里放置您的Pinecone索引名称"
pc_namespace = "如果您使用命名空间,请在此处放置它"
# 注意:这两行不是绝对必要的,仅用于测试客户端连接
pc_index = pinecone.Index(pc_index_name)
pc_index.describe_index_stats()
步骤2:创建LangChain Pinecone接口
from langchain.vectorstores import Pinecone
pc_interface = Pinecone.from_existing_index(
pc_index_name,
embedding=OpenAIEmbeddings(),
namespace=pc_namespace
)
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.chains import RetrievalQAWithSourcesChain
# 现在您可以使用Pinecone数据库进行问答,或者进行其他操作
my_qa_chain = RetrievalQAWithSourcesChain(
combine_documents_chain=load_qa_with_sources_chain(...),
retriever=pc_interface.as_retriever()
)
所以,pinecone
(小写)是由Pinecone制作的Pinecone客户端模块,而Pinecone
(大写)是LangChain对Pinecone vectorstore的接口,由LangChain制作(需要经过身份验证的pinecone.init()
才能正常使用)。
英文:
There are two steps to getting Pinecone set up with LangChain: (1) connect to Pinecone client with the pinecone
module and authenticate, then (2) use the Pinecone
interface that LangChain provides.
You already have done some of the steps, and @NickODell noted the right way to import the Pinecone client. This answer demonstrates a quick walkthrough of both steps in this process.
Step 1: Initialize/Authenticate Pinecone client
#!pip install pinecone-client
import pinecone
pinecone.init(
api_key=os.environ["PINECONE_API_KEY"],
environment=os.environ["PINECONE_ENV"]
)
pc_index_name = "put-your-pinecone-index-name-here"
pc_namespace = "if-you-are-using-a-namespace-put-it-here"
# note: these 2 lines are not strictly necessary, just testing client connection
pc_index = pinecone.Index(pc_index_name)
pc_index.describe_index_stats()
Step 2: Create LangChain Pinecone interface
from langchain.vectorstores import Pinecone
pc_interface = Pinecone.from_existing_index(
pc_index_name,
embedding=OpenAIEmbeddings(),
namespace=pc_namespace
)
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.chains import RetrievalQAWithSourcesChain
# now you can do QA with your Pinecone DB or whatever else you want
my_qa_chain = RetrievalQAWithSourcesChain(
combine_documents_chain=load_qa_with_sources_chain(...),
retriever=pc_interface.as_retriever()
)
So pinecone
(lowercase) is the Pinecone client module, made by Pinecone. And Pinecone
(uppercase) is the LangChain interface to a Pinecone vectorstore, made by LangChain (which needs an authenticated pinecone.init()
in order to function).
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论