高效且可扩展的方式处理Python中大型数据集的时间序列分析

huangapple go评论98阅读模式
英文:

Efficient and Scalable Way to Handle Time Series Analysis with Large Datasets in Python

问题

我正在处理一个非常庞大的数据集(超过1亿行)的时间序列数据,每行代表一个带有时间戳的单独事件,每个时间戳有多个事件。我需要对这些数据进行分析,如按时间间隔聚合事件(例如,按分钟、按小时),计算移动平均等。

这是我的数据的简化示例:

import pandas as pd

# 示例数据
data = pd.DataFrame({
    'timestamp': pd.date_range(start='1/1/2020', periods=100000000, freq='S'),
    'event': ['event{}'.format(i % 100) for i in range(100000000)]
})

标准的 pandas 方法(例如使用 resamplerolling)对于这么多数据太慢了。我知道Dask可能是处理大型数据集的解决方案,但我不确定它是否是处理时间序列数据的最佳工具,以及如果是的话,如何有效地用于此目的。

因此,我的问题是:有哪些在Python中处理大型数据集的时间序列分析的高效和可扩展的方法?是否有特定的技术、库或范例适用于这种问题?

我尝试使用内置的pandas函数 resample 按分钟聚合我的数据。鉴于数据集的大小,我预计这个操作会耗时,但希望能在合理的时间内完成。

然而,操作的时间远远超出了预期,我不得不在它完成之前终止它。因此,我无法对我的数据执行所需的分析。

我还尝试使用 rolling 函数计算移动平均,但遇到了类似的性能问题。计算不仅很慢,而且还消耗大量内存,导致我的系统显著减速。

因此,我正在寻找在Python中处理大型数据集的时间序列分析的更有效方法。我的目标是找到一个能够更快地执行这些操作并且内存使用较少的解决方案。

英文:

I'm working with a very large dataset (over 100 million rows) of time-series data in Python. Each row represents a separate event with a timestamp, and there are multiple events for each timestamp. I need to perform analysis on this data, such as aggregating events by time intervals (e.g., by minute, by hour), calculating moving averages, etc.

Here's a simplified example of what my data looks like:

import pandas as pd

# Example data
data = pd.DataFrame({
    'timestamp': pd.date_range(start='1/1/2020', periods=100000000, freq='S'),
    'event': ['event{}'.format(i % 100) for i in range(100000000)]
})

The standard pandas approach for time-series analysis (e.g., using resample or rolling) is too slow for this amount of data.

I'm aware of Dask as a potential solution for handling large datasets, but I'm not sure if it's the best tool for time-series data, and if so, how to use it effectively for this purpose.

So, my question is: What are some efficient and scalable ways to handle time-series analysis with large datasets in Python? Are there specific techniques, libraries, or paradigms that are well-suited to this kind of problem?

I'd appreciate any advice or examples that could point me in the right direction.

I attempted to use the built-in pandas function resample to aggregate my data by minute. Given the size of my dataset, I expected this operation to be time-consuming, but hoped it would complete in a reasonable timeframe.

However, the operation took far longer than expected, and I had to terminate it before it completed. As a result, I was unable to perform the required analysis on my data.

I also tried using the rolling function to calculate moving averages, but faced similar performance issues. The computation was not only slow, but it also consumed a large amount of memory, causing my system to slow down significantly.

Therefore, I'm looking for a more efficient method to handle time-series analysis on large datasets in Python. My objective is to find a solution that can perform these operations faster and with less memory usage.

答案1

得分: 1

对于处理大型数据集,我建议您使用PySparkApache Spark(其python接口是PySpark)是一个分布式数据处理引擎,可以优化集群和单机上大型数据集的处理。这是一篇有趣的文章,比较了在单台机器上pandasPySpark的性能,以及PySpark的表现更好。

另外,如果您希望将计算迁移到集群(考虑到您的数据量可能会变得庞大),使用PySpark编写代码将使您能够无缝过渡。

编辑:我个人推荐pyspark而不是DuckDBPolars的主要原因

推荐始终是个人的,并取决于一个人认为最重要的偏好和标准 - 有些人可能会推荐DuckDBPolars而不是pyspark,如果他们有在他们的上下文中有意义的有效原因,那对我来说完全可以理解。除了了解OP使用大量数据之外,我们对OP的情境了解甚少,这也是我不详细讨论诸如“解决方案集成”、“在云中利用解决方案的能力”、“在团队成员之间分配工作的能力”等方面的原因。

我个人推荐PySpark的主要原因是社区规模: 在各种提供所需功能的方法之间进行选择时,我个人总是倾向于选择拥有最大开源社区的方法;一般来说,社区越大,功能越丰富,支持(也包括在StackOverflow上的支持)越多。在我看来,下面的图片有力地展示了哪个社区是最大的。

高效且可扩展的方式处理Python中大型数据集的时间序列分析

英文:

For working with large datasets, I would recommend you working with PySpark. Apache Spark (whose python interface is PySpark) is a distributed data processing engine which optimises processing of large datasets both on clusters and single machines. Here is an interesting article which compares the performance of pandas and PySpark on a single machine and how PySpark performs better.

Also, if you ever want to move to a cluster for your computations (which might become necessary given the amount of data you have), writing your code in PySpark would allow you to make a seamless transition.

Edit: Primary Reason why I personally recommended pyspark and not DuckDB or Polars

Recommendations are always personal and depend on the preferences and criteria one considers most important - some people might recommend DuckDB or Polars over pyspark and, if they have valid reasons which make sense in their context, that seems perfectly fine to me. We know very little about the context of OP apart from the fact that OP uses a lot of data, which is why I won't elaborate on aspects such as "solution integration", "ability to leverage solution in the cloud", "ability to distribute work amongst team members", etc.

The primary reason for me to recommend PySpark is Community Size: When choosing between various approaches where all provide the functionality that is needed, I personally would always go for the one which has the biggest open-source community; generally the larger the community, the more features and the more support (also on StackOverflow) you'll get. In my opinion the picture below shows compellingly whose community is the largest.

高效且可扩展的方式处理Python中大型数据集的时间序列分析

huangapple
  • 本文由 发表于 2023年5月15日 03:46:06
  • 转载请务必保留本文链接:https://go.coder-hub.com/76249396.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定