在R中从特定行子集变更一列。

huangapple go评论63阅读模式
英文:

Mutating a column in R from a particular row subset

问题

I'm here to assist with the translation. Here's the translation of the content you provided:

我正在尝试基于三个其他列创建一个新的数据框列:一个父列、一个特定指示器列和组合父特定指示器的值。

给定:

  parent specific val
1      a        x  10
2      a        y  11
3      a        z  12
4      b        x  20
5      b        y  21
6      b        z  22
7      c        x  30
8      c        y  31
9      c        z  32

我想要创建一个新列,比如px_val(选择每个父级的x值),以便得到的数据框如下所示:

  parent specific val px_val
1      a        x  10     10
2      a        y  11     10
3      a        z  12     10
4      b        x  20     20
5      b        y  21     20
6      b        z  22     20
7      c        x  30     30
8      c        y  31     30
9      c        z  32     30

测试数据框的代码:

df <- data.frame(
  parent=c('a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'),
  specific=c('x', 'y', 'z', 'x', 'y', 'z', 'x', 'y', 'z'),
  val=c(10, 11, 12, 20, 21, 22, 30, 31, 32)
)

我考虑过也许可以迭代数据框,将给定父级的x值存储在变量中,并将其分配给每个父级。但感觉必须有一个更优雅的解决方案?

英文:

I am trying to create a new column in a dataframe based upon three other columns: a parent column, specific indicator column, and the value of the combined parent-specific indicator.

Given:

  parent specific val
1      a        x  10
2      a        y  11
3      a        z  12
4      b        x  20
5      b        y  21
6      b        z  22
7      c        x  30
8      c        y  31
9      c        z  32

I'm looking to create a new column, say px_val (selecting the x value of each parent), so that the resulting dataframe is:

  parent specific val px_val
1      a        x  10     10
2      a        y  11     10
3      a        z  12     10
4      b        x  20     20
5      b        y  21     20
6      b        z  22     20
7      c        x  30     30
8      c        y  31     30
9      c        z  32     30

Code for test df:

df &lt;- data.frame(
  parent=c(&#39;a&#39;, &#39;a&#39;, &#39;a&#39;, &#39;b&#39;, &#39;b&#39;, &#39;b&#39;, &#39;c&#39;, &#39;c&#39;, &#39;c&#39;),
  specific=c(&#39;x&#39;, &#39;y&#39;, &#39;z&#39;, &#39;x&#39;, &#39;y&#39;, &#39;z&#39;, &#39;x&#39;, &#39;y&#39;, &#39;z&#39;),
  val=c(10, 11, 12, 20, 21, 22, 30, 31, 32)
)

I've thought to maybe iterate over the dataframe, storing the x value of a given parent in a variable and assigning that to each parent. But it feels like there has to be a more elegant solution?

答案1

得分: 0

我们可以这样做:

px_val 将包含 specific 等于 x 的每个唯一父级的值 -> val[specific == &#39;x&#39;]

.by=... 仅为此 mutate 分组,优点是我们之后不需要 ungroup():

library(dplyr) #&gt;= dplyr 1.1.0

df %&gt;%
  mutate(px_val = val[specific == &#39;x&#39;], .by=parent)

  parent specific val px_val
1      a        x  10     10
2      a        y  11     10
3      a        z  12     10
4      b        x  20     20
5      b        y  21     20
6      b        z  22     20
7      c        x  30     30
8      c        y  31     30
9      c        z  32     30
英文:

We could do it this way:

px_val will contain values where specific equals x for each unique parent -> val[specific == &#39;x&#39;]

.by=... groups only for this mutate, the advantage is that we do not need a ungroup() thereafter:

library(dplyr) #&gt;= dplyr 1.1.0

df %&gt;%
  mutate(px_val = val[specific == &#39;x&#39;], .by=parent)

  parent specific val px_val
1      a        x  10     10
2      a        y  11     10
3      a        z  12     10
4      b        x  20     20
5      b        y  21     20
6      b        z  22     20
7      c        x  30     30
8      c        y  31     30
9      c        z  32     30

huangapple
  • 本文由 发表于 2023年5月15日 01:46:40
  • 转载请务必保留本文链接:https://go.coder-hub.com/76248907.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定