Create a list or array of date time using pandas.

huangapple go评论60阅读模式
英文:

Create a list or array of date time using pandas

问题

我正在尝试使用pandas在Python中创建一个日期时间列表。我想要类似这样的结果:

2023-05-10_00:00:00
2023-05-10_01:00:00
2023-05-10_02:00:00
.....
.....
2023-05-10_23:00:00

所以基本上我想要带有1小时间隔的日期时间数据。我尝试了以下代码:

dt = pd.to_datetime('2023-05-10', format='%Y-%m-%d')
print(dt)

这给了我以下结果,但不完全符合我的要求:

2023-05-10 00:00:00

我也考虑过创建一个只包含日期2023-05-10的列表或数组,以及另一个只包含1小时增量的时间数组,然后用下划线_将它们粘在一起。我不确定如何在Python中做到这一点。

提前感谢您。

英文:

I am trying to create a list of date time in python using pandas. I want something like:

2023-05-10_00:00:00
2023-05-10_01:00:00
2023-05-10_02:00:00
.....
.....
2023-05-10_23:00:00

So basically I want data with datetime with 1 hour increment. I tried the following

dt = pd.to_datetime('2023-05-10',format='%Y-%m-%d')
print(dt)

which gives me the following, and it is not exactly what I am looking for

2023-05-10 00:00:00

I was also thinking of creating a list or array with just the date 2023-05-10 and another array with only time with 1-hr increment, and then paste them together with a separator _. I am not sure how to do this in Python.

Thanks in advance.

答案1

得分: 1

import pandas as pd

df = pd.date_range('2023-05-01', '2023-05-02', freq='H')

DatetimeIndex(['2023-05-01 00:00:00', '2023-05-01 01:00:00',
               '2023-05-01 02:00:00', '2023-05-01 03:00:00',
               '2023-05-01 04:00:00', '2023-05-01 05:00:00',
               '2023-05-01 06:00:00', '2023-05-01 07:00:00',
               '2023-05-01 08:00:00', '2023-05-01 09:00:00',
               '2023-05-01 10:00:00', '2023-05-01 11:00:00',
               '2023-05-01 12:00:00', '2023-05-01 13:00:00',
               '2023-05-01 14:00:00', '2023-05-01 15:00:00',
               '2023-05-01 16:00:00', '2023-05-01 17:00:00',
               '2023-05-01 18:00:00', '2023-05-01 19:00:00',
               '2023-05-01 20:00:00', '2023-05-01 21:00:00',
               '2023-05-01 22:00:00', '2023-05-01 23:00:00',
               '2023-05-02 00:00:00'],
              dtype='datetime64[ns]', freq='H')
英文:
import pandas as pd

df = pd.date_range('2023-05-01', '2023-05-02', freq='H')

DatetimeIndex(['2023-05-01 00:00:00', '2023-05-01 01:00:00',
               '2023-05-01 02:00:00', '2023-05-01 03:00:00',
               '2023-05-01 04:00:00', '2023-05-01 05:00:00',
               '2023-05-01 06:00:00', '2023-05-01 07:00:00',
               '2023-05-01 08:00:00', '2023-05-01 09:00:00',
               '2023-05-01 10:00:00', '2023-05-01 11:00:00',
               '2023-05-01 12:00:00', '2023-05-01 13:00:00',
               '2023-05-01 14:00:00', '2023-05-01 15:00:00',
               '2023-05-01 16:00:00', '2023-05-01 17:00:00',
               '2023-05-01 18:00:00', '2023-05-01 19:00:00',
               '2023-05-01 20:00:00', '2023-05-01 21:00:00',
               '2023-05-01 22:00:00', '2023-05-01 23:00:00',
               '2023-05-02 00:00:00'],
              dtype='datetime64[ns]', freq='H')

答案2

得分: 1

我生成了3个示例数据:

pd.date_range('2023-05-10', periods=3, freq='H').strftime('%Y-%m-%d_%H:%M:%S')

输出:

Index(['2023-05-10_00:00:00', '2023-05-10_01:00:00', '2023-05-10_02:00:00'], dtype='object')
英文:

i make 3 data for example

pd.date_range('2023-05-10', periods=3, freq='H').strftime('%Y-%m-%d_%H:%M:%S')

output:

Index(['2023-05-10_00:00:00', '2023-05-10_01:00:00', '2023-05-10_02:00:00'], dtype='object')

huangapple
  • 本文由 发表于 2023年5月11日 01:29:46
  • 转载请务必保留本文链接:https://go.coder-hub.com/76221157.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定