英文:
Is Big Query an append-only option?
问题
我们需要一个仅追加的数据库用于敏感记录,因为一些合规法律要求。在线搜索时,我看到了以下说明:
BigQuery中的数据是不可变的。也就是说,一旦写入数据,就不会修改。每当发生更改时,都会写入数据的新版本。
然而,我尚未找到一种方法来证明,实际上在记录发生变异(更新或删除)后是否会生成表的新版本。我已经检查了INFORMATION_SCHEMA.TABLES
元数据以及在更新记录后生成的所有云日志,但我找不到类似于ID的东西,可以显示在表中发生更改后生成了新版本。
我是否忽略了什么?如果没有,是否有一个可以作为仅追加的审计的GCP产品?谢谢!
英文:
we need an append-only database for sensitive records due to some compliant laws. Looking online I've seen the following statement
> Data in BigQuery is immutable. i.e. data once written is not modified. Whenever a change happens, a new version of the data is written.
However I've not been able to find a way to prove that in fact after a record has mutated (Updated or deleted) there is a new version of the table, I've checked the INFORMATION_SCHEMA.TABLES
metadata, and all the logs generated in cloud logging after updating a record, but I can not find something like an ID that will show that after a change in the table, a new version is generated
Is there something that I'm not seeing? and if not, is there a GCP product that could be audited as append-only? Thanks!
答案1
得分: 1
你可能正在寻找一个"分户账数据库"而不是数据仓库。BigQuery不符合您的需求。
当文档说BigQuery中的数据是不可变的时,意味着您实际上无法更新记录,而是需要重新创建整个数据块。这也适用于RedShift以及其他一些云数据仓库。
所以答案绝对是否定的。在这种情况下,BigQuery不符合您的需求。
我建议您查看Amazon QLDB,看看它是否符合您的需求。还发现Azure上的SQL Server具有一些分户账能力,可能值得一看,还有一个Confidential Ledger服务。
英文:
You may be looking for a "ledger database" not a DataWarehouse. BigQuery does not comply with your needs.
When the docs says that data in BigQuery is immutable it means that you cannot in fact update a record, but will instead recreate entire blocks of data. This is the case for RedShift too and maybe others cloud DataWarehouses.
So the answer is definetely no. BigQuery does not fit your needs in this case.
I would suggest you look at Amazon QLDB to check if it fit your needs. Also found that SQL Server on Azure has some ledger capabilities which might be worth looking for and there is also a Confidential Ledger service.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论