API集成:索引错误:对标量变量的无效索引

huangapple go评论66阅读模式
英文:

API Integration: IndexError: invalid index to scalar variable

问题

以下是您提供的代码的中文翻译部分:

我正在尝试使用FastAPI集成我的Yolov4 darknet自定义训练模型但控制台上出现了IndexError: scalar变量的无效索引并且在FastAPI本地服务器上出现了内部服务器错误以下是我的用于运行API的代码

```python
import cv2
import numpy as np
import tensorflow as tf

# 加载 YOLO v4 模型
model = cv2.dnn.readNetFromDarknet("yolov4_test.cfg", "yolov4_train_final.weights")

from fastapi import FastAPI, File, UploadFile
from typing import List, Tuple

app = FastAPI()

@app.post("/detect_objects")
async def detect_objects(image: UploadFile = File(...)) -> List[Tuple[str, Tuple[int, int, int, int]]]:
    # 读取图像文件
    image_bytes = await image.read()
    nparr = np.frombuffer(image_bytes, np.uint8)
    img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)

    # 在图像上运行 YOLO v4 模型
    blob = cv2.dnn.blobFromImage(img, 1/255.0, (608, 608), swapRB=True, crop=False)
    model.setInput(blob)
    layer_names = model.getLayerNames()
    output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]
    outputs = model.forward(output_layers)

    # 提取边界框和类别标签
    boxes = []
    for output in outputs:
        for detection in output:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > 0.5:
                center_x = int(detection[0] * img.shape[1])
                center_y = int(detection[1] * img.shape[0])
                width = int(detection[2] * img.shape[1])
                height = int(detection[3] * img.shape[0])
                left = int(center_x - width / 2)
                top = int(center_y - height / 2)
                boxes.append((class_id, (left, top, width, height)))

    # 将类别ID映射到类别标签
    classes = ["枪支"]
    results = []
    for box in boxes:
        class_label = classes[box[0]]
        bbox = box[1]
        results.append((class_label, bbox))
        
    return results

控制台中的错误信息如下:

Traceback (most recent call last):
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\uvicorn\protocols\http\h11_impl.py", line 428, in run_asgi
result = await app(  # type: ignore[func-returns-value]
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\uvicorn\middleware\proxy_headers.py", line 78, in __call__
return await self.app(scope, receive, send)
# 其他错误信息...
IndexError: scalar变量的无效索引。

您正在尝试获得边界框和标签,并将它们作为服务器响应返回。

英文:

I am trying to integrate my Yolov4 darknet customed trained model using fast api but am getting an IndexError: invalid index to scalar variable on console and Internal Server Error on Fastapi local server. Following is my code to run the API:

import cv2
import numpy as np
import tensorflow as tf
# Load YOLO v4 model
model = cv2.dnn.readNetFromDarknet("yolov4_test.cfg", "yolov4_train_final.weights")
from fastapi import FastAPI, File, UploadFile
from typing import List, Tuple
app = FastAPI()
@app.post("/detect_objects")
async def detect_objects(image: UploadFile = File(...)) -> List[Tuple[str, Tuple[int, int, int, int]]]:
# Read image file
image_bytes = await image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Run YOLO v4 model on image
blob = cv2.dnn.blobFromImage(img, 1/255.0, (608, 608), swapRB=True, crop=False)
model.setInput(blob)
layer_names = model.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]
outputs = model.forward(output_layers)
# Extract bounding boxes and class labels
boxes = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * img.shape[1])
center_y = int(detection[1] * img.shape[0])
width = int(detection[2] * img.shape[1])
height = int(detection[3] * img.shape[0])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
boxes.append((class_id, (left, top, width, height)))
# Map class IDs to class labels
classes = ["Gun"]
results = []
for box in boxes:
class_label = classes[box[0]]
bbox = box[1]
results.append((class_label, bbox))
return results

Following is the error i am getting in console:

Traceback (most recent call last):
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\uvicorn\protocols\http\h11_impl.py", line 428, in run_asgi
result = await app(  # type: ignore[func-returns-value]
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\uvicorn\middleware\proxy_headers.py", line 78, in __call__
return await self.app(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\fastapi\applications.py", line 276, in __call__
await super().__call__(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\applications.py", line 122, in __call__
await self.middleware_stack(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\middleware\errors.py", line 184, in __call__
raise exc
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\middleware\errors.py", line 162, in __call__
await self.app(scope, receive, _send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\middleware\exceptions.py", line 79, in __call__
raise exc
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\middleware\exceptions.py", line 68, in __call__
await self.app(scope, receive, sender)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\fastapi\middleware\asyncexitstack.py", line 21, in __call__
raise e
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\fastapi\middleware\asyncexitstack.py", line 18, in __call__
await self.app(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\routing.py", line 718, in __call__
await route.handle(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\routing.py", line 276, in handle
await self.app(scope, receive, send)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\starlette\routing.py", line 66, in app
response = await func(request)
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\fastapi\routing.py", line 237, in app
raw_response = await run_endpoint_function(
File "c:\users\raafeh\desktop\fyp\envfast\lib\site-packages\fastapi\routing.py", line 163, in run_endpoint_function
return await dependant.call(**values)
File "C:\Users\Raafeh\Desktop\FYP\main.py", line 27, in detect_objects
output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]
File "C:\Users\Raafeh\Desktop\FYP\main.py", line 27, in <listcomp>
output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]
IndexError: invalid index to scalar variable.

I am trying get the bounding boxes and Label out as the server response

答案1

得分: 0

基于快速搜索结果,这与FastAPI无关,而是由于尝试索引NumPy标量,例如整数或浮点数所致。

快速查看代码会建议以下行中的 i 是一个整数,这导致了错误:

output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]

也许用 layer_names[i - 1] 替换 layer_names[i[0] - 1] 可能会解决这个问题。

英文:

Based on a quick search, this has nothing to do with FastAPI but rather is caused by trying to index a NumPy scalar, an integer or float for example.

A quick look at the code would suggest that the i on the following line is an integer, and that causes the error:

output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]

Maybe replacing layer_names[i[0] - 1] with layer_names[i - 1] might solve this.

答案2

得分: 0

layer_names[i[0] - 1] 替换为 layer_names[i - 1],但接着我遇到了另一个错误:

> cv2.error: 来自OpenCV代码的未知C++异常

这是我使用的OpenCV版本(4.7)引起的问题,我将其更改为4.6,API代码就正常工作了。

英文:

So my problem was solved by replacing layer_names[i[0] - 1] with layer_names[i - 1] but then I faced another error of

> cv2.error: Unknown C++ exception from OpenCV code

This was an issue with the OpenCV version I used which was 4.7, I changed it to 4.6 and volaa! My api code was working .

huangapple
  • 本文由 发表于 2023年5月7日 04:02:25
  • 转载请务必保留本文链接:https://go.coder-hub.com/76190876.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定