每个循环后同一年份的柱状间隙

huangapple go评论88阅读模式
英文:

Gap between bars of the same year after each loop

问题

这是一段Python代码,用于绘制图表。你想要对其中的某些部分进行翻译吗?如果是,请提供要翻译的具体内容。

英文:

I have a program/function that plots a graph like this -

每个循环后同一年份的柱状间隙

What I am trying to do is stack the bars of the same year side by side, then leave some gap in between, and then stack the bars of another year side by side again. I am not able to solve this problem.

This is the code/function to plot the graph(for reference) -

  1. def plot_monthly_multiple_store2():
  2. df = order_merged.multi_store_monthly_count([2020,2021], [1,2,3,4], ['Crizac','Ucol'])
  3. df['year'] = df['date_added'].dt.year
  4. df['month'] = df['date_added'].dt.month
  5. # Calculate count by year and month
  6. count_df = df.groupby(['year', 'month', 'store_type'])['order_id'].count().reset_index()
  7. # Pivot the count data by year and month
  8. pivot_df = pd.pivot_table(count_df, values='order_id', index=['year', 'month'], columns=['store_type'], fill_value=0)
  9. print(pivot_df,"\n")
  10. print(pivot_df.index.levels[1],"\n")
  11. print(pivot_df.index[:(len(pivot_df.index)//2)])
  12. # Plot the stacked bar chart
  13. fig, ax = plt.subplots(figsize=(10, 5))
  14. colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd']
  15. width = 0.8 / len(pivot_df.index.levels[0])
  16. print(pivot_df.loc[2020,1])
  17. # print(pivot_df.loc[2021].index)
  18. for i, year in enumerate(pivot_df.index.levels[0]):
  19. x_pos = np.arange(len(pivot_df.loc[year].index)) + i*len(pivot_df.loc[year].index)
  20. print(x_pos,"\n")
  21. for j, store_type in enumerate(pivot_df.columns):
  22. ax.bar(x_pos, pivot_df.loc[year, store_type], width=width, align='edge', color=colors[j], alpha = 0.7, edgecolor='black', linewidth = 0.5, label=store_type if i==0 else None)
  23. for x, y in zip(x_pos, pivot_df.loc[year, store_type]):
  24. ax.text(x + width / 2, y, str(y), ha='center', va='bottom', fontsize=8)
  25. ax.set_xticks(np.arange(len(pivot_df.index)))
  26. ax.set_xticklabels([f"{calendar.month_abbr[month]}\n{year}" for year, month in pivot_df.index], fontsize=8)
  27. ax.set_xlabel('Year', fontsize=12)
  28. ax.set_ylabel('Count', fontsize=12)
  29. ax.set_title('Order Count by Month and Store Type', fontsize=14)
  30. ax.legend(loc='upper left', bbox_to_anchor=(1.0, 1.0))
  31. plt.tight_layout()
  32. plt.show()

答案1

得分: 1

以下是您的代码的翻译部分:

  1. 我对Pandas不是很了解但我希望它能帮助
  2. pandas导入DataFrame作为DF
  3. 导入matplotlib.pyplot as plt
  4. 导入pandas as pd
  5. # 创建虚拟数据
  6. df = DF()
  7. df['date'] = ['2020-01', '2020-02', '2020-03', '2020-04',
  8. '2021-01', '2021-02', '2021-03', '2021-04']
  9. df['C'] = [10, 20, 30, 40,
  10. 50, 60, 70, 80]
  11. df['R'] = [100, 120, 130, 140,
  12. 120, 150, 130, 150]
  13. df['date'] = pd.to_datetime(df['date'])
  14. gap = 5.0
  15. x_labels = df['date'].dt.strftime('%b\n%Y')
  16. df20 = df[df['date'].dt.year == 2020]
  17. df21 = df[df['date'].dt.year == 2021]
  18. x20 = df20['date'].dt.month
  19. x21 = df21['date'].dt.month + gap
  20. fig, ax = plt.subplots()
  21. r1 = ax.bar(x20, df20['R'], align='edge', color='blue')
  22. r2 = ax.bar(x20, df20['C'], align='edge', color='orange')
  23. r3 = ax.bar(x21, df21['R'], align='edge', color='blue')
  24. r4 = ax.bar(x21, df21['C'], align='edge', color='orange')
  25. ax.set_xticks([*x20, *x21], x_labels)
  26. ax.bar_label(r1)
  27. ax.bar_label(r2)
  28. ax.bar_label(r3)
  29. ax.bar_label(r4)

我的虚拟数据:

  1. 日期 C R
  2. 0 2020-01-01 10 100
  3. 1 2020-02-01 20 120
  4. 2 2020-03-01 30 130
  5. 3 2020-04-01 40 140
  6. 4 2021-01-01 50 120
  7. 5 2021-02-01 60 150
  8. 6 2021-03-01 70 130
  9. 7 2021-04-01 80 150

每个循环后同一年份的柱状间隙

英文:

I don't know the Pandas well, but I hope it helps.

  1. from pandas import DataFrame as DF
  2. import matplotlib.pyplot as plt
  3. import pandas as pd
  4. # creating dummy data
  5. df = DF()
  6. df['date'] = ['2020-01', '2020-02', '2020-03', '2020-04',
  7. '2021-01', '2021-02', '2021-03', '2021-04']
  8. df['C'] = [10, 20, 30, 40,
  9. 50, 60, 70, 80]
  10. df['R'] = [100, 120, 130, 140,
  11. 120, 150, 130, 150]
  12. df['date'] = pd.to_datetime(df['date'])
  13. gap = 5.0
  14. x_labels = df['date'].dt.strftime('%b\n%Y')
  15. df20 = df[df['date'].dt.year == 2020]
  16. df21 = df[df['date'].dt.year == 2021]
  17. x20 = df20['date'].dt.month
  18. x21 = df21['date'].dt.month + gap
  19. fig, ax = plt.subplots()
  20. r1 = ax.bar(x20, df20['R'], align='edge', color='blue')
  21. r2 = ax.bar(x20, df20['C'], align='edge', color='orange')
  22. r3 = ax.bar(x21, df21['R'], align='edge', color='blue')
  23. r4 = ax.bar(x21, df21['C'], align='edge', color='orange')
  24. ax.set_xticks([*x20, *x21], x_labels)
  25. ax.bar_label(r1)
  26. ax.bar_label(r2)
  27. ax.bar_label(r3)
  28. ax.bar_label(r4)

My dummy data:

  1. date C R
  2. 0 2020-01-01 10 100
  3. 1 2020-02-01 20 120
  4. 2 2020-03-01 30 130
  5. 3 2020-04-01 40 140
  6. 4 2021-01-01 50 120
  7. 5 2021-02-01 60 150
  8. 6 2021-03-01 70 130
  9. 7 2021-04-01 80 150

每个循环后同一年份的柱状间隙

huangapple
  • 本文由 发表于 2023年5月6日 16:25:25
  • 转载请务必保留本文链接:https://go.coder-hub.com/76187884.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定