透视表按行总计

huangapple go评论93阅读模式
英文:

total by rows of pivot table

问题

以下是您要翻译的内容:

"我有以下数据框(CSV)

  1. item_group item_code total_qty total_amount cost_center
  2. 0 Drink IC06-1P 1 3.902 Cafe II
  3. 1 Drink IC09-1 1 2.927 Cafe II
  4. 2 BreakFast FS04-2 1 6.463 Cafe II
  5. 3 Drink IC08-1 1 2.927 Cafe II
  6. 4 Drink DT05-1 1 2.561 Cafe II
  7. .. ... ... ... ... ...
  8. 79 Standard Food FS01-2 12 83.412 Cafe II
  9. 80 Standard Food FS01-1 13 101.465 Cafe II
  10. 81 Drink IC05-1 14 54.628 Cafe I
  11. 82 Standard Food FS01-2 35 243.285 Cafe I
  12. 83 Standard Food FS01-1 44 343.420 Cafe I

我正在尝试进行数据透视

  1. # 导入pandas
  2. import pandas as pd
  3. # 读取CSV文件
  4. df = pd.read_csv("data.csv")
  5. pd.set_option('display.max_rows', None)
  6. pd.set_option('display.max_columns', None)
  7. df1 = df.pivot_table(index=['item_group','item_code'],
  8. columns=['cost_center'],
  9. values=['total_qty','total_amount'],fill_value=0,
  10. aggfunc='sum').swaplevel(axis=1).sort_index(level=0, axis=1)
  11. out = df1.join(pd.concat({'total': df1.groupby(axis=1, level=1).sum()}, axis=1))
  12. print(out)

结果

  1. cost_center Cafe I - 103cafe ... total
  2. total_amount total_qty ... total_amount total_qty
  3. item_group item_code ...
  4. Add Food AD001 1.952 4 ... 1.952 4.0
  5. AD002 0.976 2 ... 0.976 2.0
  6. AD003 1.952 4 ... 1.952 4.0
  7. AD004 5.000 5 ... 5.000 5.0
  8. AD007 0.976 2 ... 0.976 2.0
  9. ... ... ... ... ... ...
  10. Standard Food FS01-2 243.285 35 ... 326.697 47.0
  11. FS01-2P 20.853 3 ... 27.804 4.0
  12. FS01-6 6.951 1 ... 6.951 1.0
  13. FS02-1 19.389 3 ... 25.852 4.0
  14. FS02-2 6.463 1 ... 25.852 4.0

例如,我想计算group_total(每个item_group的总和)

  1. cost_center Cafe I Cafe II \...
  2. total_amount total_qty total_amount
  3. item_group item_code
  4. Add Food AD001 1.952 4 0.000
  5. AD002 0.976 2 0.000
  6. ->group_total 2.928 6 0.000
  7. BreakFast FN10-1 5.000 1 0.000
  8. FN10-1P 5.000 1 0.000
  9. ->group_total 10.00 2 0.000"
英文:

I have the following data frame (csv)

  1. item_group item_code total_qty total_amount cost_center
  2. 0 Drink IC06-1P 1 3.902 Cafe II
  3. 1 Drink IC09-1 1 2.927 Cafe II
  4. 2 BreakFast FS04-2 1 6.463 Cafe II
  5. 3 Drink IC08-1 1 2.927 Cafe II
  6. 4 Drink DT05-1 1 2.561 Cafe II
  7. .. ... ... ... ... ...
  8. 79 Standard Food FS01-2 12 83.412 Cafe II
  9. 80 Standard Food FS01-1 13 101.465 Cafe II
  10. 81 Drink IC05-1 14 54.628 Cafe I
  11. 82 Standard Food FS01-2 35 243.285 Cafe I
  12. 83 Standard Food FS01-1 44 343.420 Cafe I

I am trying to do a pivot

  1. # Import pandas
  2. import pandas as pd
  3. # Reading CSV file
  4. df = pd.read_csv("data.csv")
  5. pd.set_option('display.max_rows', None)
  6. pd.set_option('display.max_columns', None)
  7. df1 = df.pivot_table(index=['item_group','item_code'],
  8. columns=['cost_center'],
  9. values=['total_qty','total_amount'],fill_value=0,
  10. aggfunc='sum').swaplevel(axis=1).sort_index(level=0, axis=1)
  11. out = df1.join(pd.concat({'total': df1.groupby(axis=1, level=1).sum()}, axis=1))
  12. print(out)

Result

  1. cost_center Cafe I - 103cafe ... total
  2. total_amount total_qty ... total_amount total_qty
  3. item_group item_code ...
  4. Add Food AD001 1.952 4 ... 1.952 4.0
  5. AD002 0.976 2 ... 0.976 2.0
  6. AD003 1.952 4 ... 1.952 4.0
  7. AD004 5.000 5 ... 5.000 5.0
  8. AD007 0.976 2 ... 0.976 2.0
  9. ... ... ... ... ... ...
  10. Standard Food FS01-2 243.285 35 ... 326.697 47.0
  11. FS01-2P 20.853 3 ... 27.804 4.0
  12. FS01-6 6.951 1 ... 6.951 1.0
  13. FS02-1 19.389 3 ... 25.852 4.0
  14. FS02-2 6.463 1 ... 25.852 4.0

Example, I want to calculate the group_total (total by each item_group)

  1. cost_center Cafe I Cafe II \...
  2. total_amount total_qty total_amount
  3. item_group item_code
  4. Add Food AD001 1.952 4 0.000
  5. AD002 0.976 2 0.000
  6. ->group_total 2.928 6 0.000
  7. BreakFast FN10-1 5.000 1 0.000
  8. FN10-1P 5.000 1 0.000
  9. ->group_total 10.00 2 0.000

答案1

得分: 1

I can help you translate the provided code snippet into Chinese:

  1. 也许你可以从这个链接中获取灵感
  2. https://www.statology.org/pandas-pivot-table-subtotals/
  3. import pandas as pd
  4. df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
  5. 'position': ['G', 'G', 'F', 'F', 'G', 'F', 'F', 'F'],
  6. 'all_star': ['Y', 'N', 'Y', 'Y', 'N', 'N', 'N', 'Y'],
  7. 'points': [4, 4, 6, 8, 9, 5, 5, 12]})
  8. my_table = pd.pivot_table(df, values='points',
  9. index=['team', 'all_star'],
  10. columns='position',
  11. aggfunc='sum')
  12. pd.concat([
  13. y.append(y.sum().rename((x, '总计')))
  14. for x, y in my_table.groupby(level=0)])

Please note that code translations can sometimes vary depending on the context and specific requirements, so make sure to review it for your needs.

英文:

Perhaps you could take inspiration from this link

https://www.statology.org/pandas-pivot-table-subtotals/

  1. import pandas as pd
  2. df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
  3. 'position': ['G', 'G', 'F', 'F', 'G', 'F', 'F', 'F'],
  4. 'all_star': ['Y', 'N', 'Y', 'Y', 'N', 'N', 'N', 'Y'],
  5. 'points': [4, 4, 6, 8, 9, 5, 5, 12]})
  6. my_table = pd.pivot_table(df, values='points',
  7. index=['team', 'all_star'],
  8. columns='position',
  9. aggfunc='sum')
  10. pd.concat([
  11. y.append(y.sum().rename((x, 'Total')))
  12. for x, y in my_table.groupby(level=0)])

透视表按行总计

huangapple
  • 本文由 发表于 2023年4月19日 19:27:32
  • 转载请务必保留本文链接:https://go.coder-hub.com/76053948.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定