透视表按行总计

huangapple go评论65阅读模式
英文:

total by rows of pivot table

问题

以下是您要翻译的内容:

"我有以下数据框(CSV)

item_group item_code  total_qty  total_amount        cost_center
0           Drink   IC06-1P          1         3.902  Cafe II
1           Drink    IC09-1          1         2.927  Cafe II 
2       BreakFast    FS04-2          1         6.463  Cafe II
3           Drink    IC08-1          1         2.927  Cafe II
4           Drink    DT05-1          1         2.561  Cafe II
..            ...       ...        ...           ...                ...
79  Standard Food    FS01-2         12        83.412  Cafe II
80  Standard Food    FS01-1         13       101.465  Cafe II
81          Drink    IC05-1         14        54.628   Cafe I
82  Standard Food    FS01-2         35       243.285   Cafe I
83  Standard Food    FS01-1         44       343.420   Cafe I

我正在尝试进行数据透视

# 导入pandas
import pandas as pd

# 读取CSV文件

df = pd.read_csv("data.csv")
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)

df1 = df.pivot_table(index=['item_group','item_code'],
                    columns=['cost_center'],
                    values=['total_qty','total_amount'],fill_value=0,
                    aggfunc='sum').swaplevel(axis=1).sort_index(level=0, axis=1)
    
out = df1.join(pd.concat({'total': df1.groupby(axis=1, level=1).sum()}, axis=1))
print(out)

结果

cost_center             Cafe I - 103cafe            ...        total          
                            total_amount total_qty  ... total_amount total_qty
item_group    item_code                             ...                       
Add Food      AD001                1.952         4  ...        1.952       4.0
              AD002                0.976         2  ...        0.976       2.0
              AD003                1.952         4  ...        1.952       4.0
              AD004                5.000         5  ...        5.000       5.0
              AD007                0.976         2  ...        0.976       2.0
...                                  ...       ...  ...          ...       ...
Standard Food FS01-2             243.285        35  ...      326.697      47.0
              FS01-2P             20.853         3  ...       27.804       4.0
              FS01-6               6.951         1  ...        6.951       1.0
              FS02-1              19.389         3  ...       25.852       4.0
              FS02-2               6.463         1  ...       25.852       4.0

例如,我想计算group_total(每个item_group的总和)

cost_center                       Cafe I                   Cafe II \...
                            total_amount total_qty      total_amount   
item_group    item_code                                                  
Add Food      AD001                1.952         4             0.000   
              AD002                0.976         2             0.000   
->group_total                      2.928         6             0.000
BreakFast     FN10-1               5.000         1             0.000   
              FN10-1P              5.000         1             0.000   
->group_total                      10.00         2             0.000"
英文:

I have the following data frame (csv)

item_group item_code  total_qty  total_amount        cost_center
0           Drink   IC06-1P          1         3.902  Cafe II
1           Drink    IC09-1          1         2.927  Cafe II 
2       BreakFast    FS04-2          1         6.463  Cafe II
3           Drink    IC08-1          1         2.927  Cafe II
4           Drink    DT05-1          1         2.561  Cafe II
..            ...       ...        ...           ...                ...
79  Standard Food    FS01-2         12        83.412  Cafe II
80  Standard Food    FS01-1         13       101.465  Cafe II
81          Drink    IC05-1         14        54.628   Cafe I
82  Standard Food    FS01-2         35       243.285   Cafe I
83  Standard Food    FS01-1         44       343.420   Cafe I

I am trying to do a pivot

# Import pandas
import pandas as pd

# Reading CSV file

df = pd.read_csv("data.csv")
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)

df1 = df.pivot_table(index=['item_group','item_code'],
                    columns=['cost_center'],
                    values=['total_qty','total_amount'],fill_value=0,
                    aggfunc='sum').swaplevel(axis=1).sort_index(level=0, axis=1)
    
out = df1.join(pd.concat({'total': df1.groupby(axis=1, level=1).sum()}, axis=1))
print(out)

Result

cost_center             Cafe I - 103cafe            ...        total          
                            total_amount total_qty  ... total_amount total_qty
item_group    item_code                             ...                       
Add Food      AD001                1.952         4  ...        1.952       4.0
              AD002                0.976         2  ...        0.976       2.0
              AD003                1.952         4  ...        1.952       4.0
              AD004                5.000         5  ...        5.000       5.0
              AD007                0.976         2  ...        0.976       2.0
...                                  ...       ...  ...          ...       ...
Standard Food FS01-2             243.285        35  ...      326.697      47.0
              FS01-2P             20.853         3  ...       27.804       4.0
              FS01-6               6.951         1  ...        6.951       1.0
              FS02-1              19.389         3  ...       25.852       4.0
              FS02-2               6.463         1  ...       25.852       4.0

Example, I want to calculate the group_total (total by each item_group)

cost_center                       Cafe I                   Cafe II \...
                            total_amount total_qty      total_amount   
item_group    item_code                                                
Add Food      AD001                1.952         4             0.000   
              AD002                0.976         2             0.000   
->group_total                      2.928         6             0.000
BreakFast     FN10-1               5.000         1             0.000   
              FN10-1P              5.000         1             0.000   
->group_total                      10.00         2             0.000

答案1

得分: 1

I can help you translate the provided code snippet into Chinese:

也许你可以从这个链接中获取灵感

https://www.statology.org/pandas-pivot-table-subtotals/

import pandas as pd

df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
                   'position': ['G', 'G', 'F', 'F', 'G', 'F', 'F', 'F'],
                   'all_star': ['Y', 'N', 'Y', 'Y', 'N', 'N', 'N', 'Y'],
                   'points': [4, 4, 6, 8, 9, 5, 5, 12]})

my_table = pd.pivot_table(df, values='points',
                              index=['team', 'all_star'],
                              columns='position',
                              aggfunc='sum')

pd.concat([
    y.append(y.sum().rename((x, '总计')))
    for x, y in my_table.groupby(level=0)])

Please note that code translations can sometimes vary depending on the context and specific requirements, so make sure to review it for your needs.

英文:

Perhaps you could take inspiration from this link

https://www.statology.org/pandas-pivot-table-subtotals/

import pandas as pd

df = pd.DataFrame({'team': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
                   'position': ['G', 'G', 'F', 'F', 'G', 'F', 'F', 'F'],
                   'all_star': ['Y', 'N', 'Y', 'Y', 'N', 'N', 'N', 'Y'],
                   'points': [4, 4, 6, 8, 9, 5, 5, 12]})
 
my_table = pd.pivot_table(df, values='points',
                              index=['team', 'all_star'],
                              columns='position',
                              aggfunc='sum')

pd.concat([
    y.append(y.sum().rename((x, 'Total')))
    for x, y in my_table.groupby(level=0)])

透视表按行总计

huangapple
  • 本文由 发表于 2023年4月19日 19:27:32
  • 转载请务必保留本文链接:https://go.coder-hub.com/76053948.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定