Rodrigues绕任意轴旋转

huangapple go评论69阅读模式
英文:

Rodrigues Rotation about an arbitrary axis

问题

Sure, here's the translated code:

假设我有一个候选向量 `v(vx, vy, vz)`。我想围绕起始向量 `s(sx,sy,sz)` 到结束向量 `e(ex, ey, ez)` 的任意轴旋转 `theta` 度,当坐标轴的原点位于 `o(ox, oy, oz)` 处时。

因此,在以下源代码中,我正在执行**罗德里格斯旋转**,但结果不正确:

```C#
public class RotoTranslation
{
    private readonly Vec3 origin;
    private readonly double cosTheta;
    private readonly double sinTheta;
    private readonly Vec3 axis;
    private readonly Matrix3x3 rotationMatrix;
    private readonly Matrix3x3 translationMatrix;
    private readonly Matrix3x3 invTranslationMatrix;

    public RotoTranslation(
                Vec3 origin, 
                Vec3 start, 
                Vec3 end, 
                double angle_rad)
    {
        this.origin = origin;
        this.axis = Vec3.Normalize(end - start);
        this.cosTheta = Math.Cos(angle_rad);
        this.sinTheta = Math.Sin(angle_rad);

        Matrix3x3 uOuter = 
            Vec3.OuterProduct_mat(axis, axis);
        Matrix3x3 uCross = 
            new Matrix3x3(0.0f, -axis.z, axis.y,                   
                        axis.z, 0.0f, -axis.x,                
                        -axis.y, axis.x, 0.0f);

        rotationMatrix = 
             cosTheta * Matrix3x3.Identity()
             + (1.0f - cosTheta) * uOuter
             + sinTheta * uCross;

        translationMatrix = 
             Matrix3x3.CreateTranslation(-origin);
        rotationMatrix = 
             rotationMatrix * translationMatrix;
        invTranslationMatrix = 
            Matrix3x3.CreateTranslation(origin);
    }
    public Vec3 RotateVector(Vec3 vector)
    {
        Vec3 transformedVector = 
            Vec3.TransformNormal(
			    vector - origin, 
				rotationMatrix);
        return Vec3.Transform(
                transformedVector, 
                invTranslationMatrix);
    }
}

测试

[TestMethod]
public void TestMethod1()
{
    Vec3 origin = new Vec3(1, 1, 1);
    Vec3 start = new Vec3(1, 1, 1);
    Vec3 end = new Vec3(4, 4, 4);
    Vec3 candidate = new Vec3(3,3,3);

    double degrees = 360;
    degrees = degrees * (Math.PI / 180.0);

    RotoTranslation rot = 
        new RotoTranslation(origin, 
                            start, 
                            end, 
                            degrees);

    Vec3 rotated = rot.RotateVector(candidate);

    Assert.AreEqual(candidate[0], rotated[0]);
    Assert.AreEqual(candidate[1], rotated[1]);
    Assert.AreEqual(candidate[2], rotated[2]);
}

如果我围绕轴旋转一个向量360度,它应该位于初始向量的相同位置。然而,在这里并非如此。

你能告诉我哪里出错了吗?

N.B. 我必须使用 Matrix3x3,而不是 Matrix4x4(增广矩阵)。


请注意,这是代码的翻译部分,如果你需要任何其他帮助或有其他问题,请告诉我。

<details>
<summary>英文:</summary>

Suppose, I have a candidate vector `v(vx, vy, vz)`. I want to rotate it `theta` degrees about an arbitrary axis that starts at vector `s(sx,sy,sz)` and ends at vector `e(ex, ey, ez)` when the origin of the axes is located at `o(ox, oy, oz)`.  

So, I am doing the **Rodrigues rotation** in the following source code, but it is not giving the correct results:

```C#
public class RotoTranslation
{
    private readonly Vec3 origin;
    private readonly double cosTheta;
    private readonly double sinTheta;
    private readonly Vec3 axis;
    private readonly Matrix3x3 rotationMatrix;
    private readonly Matrix3x3 translationMatrix;
    private readonly Matrix3x3 invTranslationMatrix;
    public RotoTranslation(
                Vec3 origin, 
                Vec3 start, 
                Vec3 end, 
                double angle_rad)
    {
        this.origin = origin;
        this.axis = Vec3.Normalize(end - start);
        this.cosTheta = Math.Cos(angle_rad);
        this.sinTheta = Math.Sin(angle_rad);

        Matrix3x3 uOuter = 
            Vec3.OuterProduct_mat(axis, axis);
        Matrix3x3 uCross = 
            new Matrix3x3(0.0f, -axis.z, axis.y,                   
                        axis.z, 0.0f, -axis.x,                
                        -axis.y, axis.x, 0.0f);

        rotationMatrix = 
             cosTheta * Matrix3x3.Identity()
             + (1.0f - cosTheta) * uOuter
             + sinTheta * uCross;

        translationMatrix = 
             Matrix3x3.CreateTranslation(-origin);
        rotationMatrix = 
             rotationMatrix * translationMatrix;
        invTranslationMatrix = 
            Matrix3x3.CreateTranslation(origin);
    }
    public Vec3 RotateVector(Vec3 vector)
    {
        Vec3 transformedVector = 
            Vec3.TransformNormal(
			    vector - origin, 
				rotationMatrix);
        return Vec3.Transform(
                transformedVector, 
                invTranslationMatrix);
    }
}

Test

[TestMethod]
public void TestMethod1()
{
	Vec3 origin = new Vec3(1, 1, 1);
	Vec3 start = new Vec3(1, 1, 1);
	Vec3 end = new Vec3(4, 4, 4);
	Vec3 candidate = new Vec3(3,3,3);

	double degrees = 360;
	degrees = degrees * (Math.PI / 180.0);

	RotoTranslation rot = 
	    new RotoTranslation(origin, 
		                    start, 
							end, 
							degrees);

	Vec3 rotated = rot.RotateVector(candidate);

	Assert.AreEqual(candidate[0], rotated[0]);
	Assert.AreEqual(candidate[1], rotated[1]);
	Assert.AreEqual(candidate[2], rotated[2]);
}

If I rotate a vector around an axis 360 degrees, it should be at the same position as the initial vector. However, that is not the case here.

Can you tell me what I am doing wrong?

N.B. I must use Matrix3x3, rather than a Matrix4x4 (augmented matrix).


Full Source code

using System;
using System.Collections.Generic;
using Microsoft.VisualStudio.TestTools.UnitTesting;

public class Vec3
{
	public double x, y, z;

	public Vec3(double x, double y, double z)
	{
		this.x = x;
		this.y = y;
		this.z = z;
	}

	public static double DistanceSquared(Vec3 t1, Vec3 t2)
	{
		double x = t1.x - t2.x;
		double y = t1.y - t2.y;
		double z = t1.z - t2.z;
		return x * x + y * y + z * z;
	}

	public static double Distance(Vec3 t1, Vec3 t2)
	{
		if (t1 == null) throw new Exception(&quot;point1 is null&quot;);
		if (t2 == null) throw new Exception(&quot;point2 is null&quot;);

		return Math.Sqrt(DistanceSquared(t1, t2));
	}

	public Vec3 Subtract(Vec3 rhs)
	{
		return new Vec3(this.x - rhs.x, this.y - rhs.y, this.z - rhs.z);
	}

	public static Vec3 operator -(Vec3 a, Vec3 b)
	{
		return new Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
	}


	public Vec3 Scale(double rhs)
	{
		return new Vec3(this.x * rhs, this.y * rhs, this.z * rhs);
	}

	public double MagnitudeSquared()
	{
		return this.x * this.x + this.y * this.y + this.z * this.z;
	}

	public static double Dot(Vec3 a, Vec3 b)
	{
		return a.x * b.x + a.y * b.y + a.z * b.z;
	}


	public Vec3 Cross(Vec3 other)
	{
		double a = this.y * other.z - this.z * other.y;
		double b = this.z * other.x - this.x * other.z;
		double c = this.x * other.y - this.y * other.x;
		return new Vec3(a, b, c);
	}

	public override string ToString()
	{
		return $&quot;{x,8:0.000}{y,8:0.000}{z,8:0.000}&quot;;
	}

	public Vec3(string x, string y, string z)
	{
		this.x = Convert.ToDouble(x);
		this.y = Convert.ToDouble(y);
		this.z = Convert.ToDouble(z);
	}

	public Vec3(string xyz)
	{
		string[] vals = xyz.Split(new char[] { &#39; &#39; }, StringSplitOptions.RemoveEmptyEntries);

		this.x = Convert.ToDouble(vals[0].Trim());
		this.y = Convert.ToDouble(vals[1].Trim());
		this.z = Convert.ToDouble(vals[2].Trim());
	}

	public Vec3()
	{
	}

	public static Vec3 Normalize(Vec3 vec)
	{
		double mag = Math.Sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
		return new Vec3(vec.x / mag, vec.y / mag, vec.z / mag);
	}

	public static Vec3 OuterProduct(Vec3 a, Vec3 b)
	{
		double x = a.y * b.z - a.z * b.y;
		double y = a.z * b.x - a.x * b.z;
		double z = a.x * b.y - a.y * b.x;
		return new Vec3(x, y, z);
	}

	public static Matrix3x3 OuterProduct_mat(Vec3 lhs, Vec3 rhs)
	{
		double[,] data = new double[3, 3];

		data[0, 0] = lhs.x * rhs.x;
		data[0, 1] = lhs.x * rhs.y;
		data[0, 2] = lhs.x * rhs.z;

		data[1, 0] = lhs.y * rhs.x;
		data[1, 1] = lhs.y * rhs.y;
		data[1, 2] = lhs.y * rhs.z;

		data[2, 0] = lhs.z * rhs.x;
		data[2, 1] = lhs.z * rhs.y;
		data[2, 2] = lhs.z * rhs.z;

		return new Matrix3x3(data[0, 0], data[0, 1], data[0, 2],
							 data[1, 0], data[1, 1], data[1, 2],
							 data[2, 0], data[2, 1], data[2, 2]);
	}

	public static Vec3 operator -(Vec3 v)
	{
		return new Vec3(-v.x, -v.y, -v.z);
	}

	public static Vec3 Transform(Vec3 v, Matrix3x3 m)
	{
		double x = m[0] * v.x + m[1] * v.y + m[2] * v.z;
		double y = m[3] * v.x + m[4] * v.y + m[5] * v.z;
		double z = m[6] * v.x + m[7] * v.y + m[8] * v.z;
		return new Vec3(x, y, z);
	}

	public static Vec3 TransformNormal(Vec3 normal, Matrix3x3 matrix)
	{
		return new Vec3(
			matrix[0] * normal.x + matrix[3] * normal.y + matrix[6] * normal.z,
			matrix[1] * normal.x + matrix[4] * normal.y + matrix[7] * normal.z,
			matrix[2] * normal.x + matrix[5] * normal.y + matrix[8] * normal.z
		);
	}

	public static Vec3 operator +(Vec3 v1, Vec3 v2)
	{
		return new Vec3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
	}

	public double this[int i]
	{
		get
		{
			switch (i)
			{
				case 0:
					return x;
				case 1:
					return y;
				case 2:
					return z;
				default:
					throw new IndexOutOfRangeException();
			}
		}
		set
		{
			switch (i)
			{
				case 0:
					x = value;
					break;
				case 1:
					y = value;
					break;
				case 2:
					z = value;
					break;
				default:
					throw new IndexOutOfRangeException();
			}
		}
	}
}

public class Matrix3x3
{
	const int rows = 3;
	const int cols = 3;
	private List&lt;double&gt; data2d;

	public Matrix3x3()
	{
		data2d = new List&lt;double&gt;(new double[rows * cols]);
	}

	public Matrix3x3(double x1, double y1, double z1,
					 double x2, double y2, double z2,
					 double x3, double y3, double z3)
	{
		data2d = new List&lt;double&gt;(new double[rows * cols]);
		data2d[0] = x1; data2d[1] = y1; data2d[2] = z1;
		data2d[3] = x2; data2d[4] = y2; data2d[5] = z2;
		data2d[6] = x3; data2d[7] = y3; data2d[8] = z3;
	}

	public double this[int i]
	{
		get { return data2d[i]; }
		set { data2d[i] = value; }
	}

	public static Matrix3x3 Add(Matrix3x3 lhs, Matrix3x3 rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] + rhs[i];
		}
		return result;
	}

	public static Matrix3x3 Sub(Matrix3x3 lhs, Matrix3x3 rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] - rhs[i];
		}
		return result;
	}

	public static Matrix3x3 mul_scalar(Matrix3x3 lhs, double rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] * rhs;
		}
		return result;
	}

	public static Matrix3x3 div_scalar(Matrix3x3 lhs, double rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] / rhs;
		}
		return result;
	}

	public static Vec3 mul_vec_mut(Matrix3x3 lhs, Vec3 rhs)
	{
		double x = lhs[0] * rhs.x + lhs[1] * rhs.y + lhs[2] * rhs.z;
		double y = lhs[3] * rhs.x + lhs[4] * rhs.y + lhs[5] * rhs.z;
		double z = lhs[6] * rhs.x + lhs[7] * rhs.y + lhs[8] * rhs.z;
		return new Vec3(x, y, z);
	}

	public double det()
	{
		Matrix3x3 lhs = this;
		double a = lhs[0] * (lhs[4] * lhs[8] - lhs[5] * lhs[7]);
		double b = lhs[1] * (lhs[3] * lhs[8] - lhs[5] * lhs[6]);
		double c = lhs[2] * (lhs[3] * lhs[7] - lhs[4] * lhs[6]);
		double returns = a - b + c;
		return returns;
	}

	public static Matrix3x3 mul_mat_mut(Matrix3x3 lhs, Matrix3x3 rhs)
	{
		Matrix3x3 result = new Matrix3x3(
			lhs[0] * rhs[0] + lhs[1] * rhs[3] + lhs[2] * rhs[6], // row 1, column 1
			lhs[0] * rhs[1] + lhs[1] * rhs[4] + lhs[2] * rhs[7], // row 1, column 2
			lhs[0] * rhs[2] + lhs[1] * rhs[5] + lhs[2] * rhs[8], // row 1, column 3
			lhs[3] * rhs[0] + lhs[4] * rhs[3] + lhs[5] * rhs[6], // row 2, column 1
			lhs[3] * rhs[1] + lhs[4] * rhs[4] + lhs[5] * rhs[7], // row 2, column 2
			lhs[3] * rhs[2] + lhs[4] * rhs[5] + lhs[5] * rhs[8], // row 2, column 3
			lhs[6] * rhs[0] + lhs[7] * rhs[3] + lhs[8] * rhs[6], // row 3, column 1
			lhs[6] * rhs[1] + lhs[7] * rhs[4] + lhs[8] * rhs[7], // row 3, column 2
			lhs[6] * rhs[2] + lhs[7] * rhs[5] + lhs[8] * rhs[8]); // row 3, column 3

		return result;
	}

	public static Matrix3x3 inverse(Matrix3x3 lhs)
	{
		Matrix3x3 temp = null;
		double _det = lhs.det();
		if (_det != 0.0)
		{
			double inv_det = 1.0 / _det;
			temp = new Matrix3x3(
				lhs[4] * lhs[8] - lhs[5] * lhs[7],
				lhs[2] * lhs[7] - lhs[1] * lhs[8],
				lhs[1] * lhs[5] - lhs[2] * lhs[4],
				lhs[5] * lhs[6] - lhs[3] * lhs[8],
				lhs[0] * lhs[8] - lhs[2] * lhs[6],
				lhs[2] * lhs[3] - lhs[0] * lhs[5],
				lhs[3] * lhs[7] - lhs[4] * lhs[6],
				lhs[1] * lhs[6] - lhs[0] * lhs[7],
				lhs[0] * lhs[4] - lhs[1] * lhs[3]);
		}
		return temp;
	}

	public static Matrix3x3 Identity()
	{
		return new Matrix3x3(1.0, 0.0, 0.0,
										0.0, 1.0, 0.0,
										0.0, 0.0, 1.0);
	}

	public static Matrix3x3 OuterProduct(Matrix3x3 a, Matrix3x3 b)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows; i++)
		{
			for (int j = 0; j &lt; cols; j++)
			{
				result[i * cols + j] = a[i] * b[j];
			}
		}
		return result;
	}

	public static Matrix3x3 operator *(Matrix3x3 lhs, double rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] * rhs;
		}
		return result;
	}

	public static Matrix3x3 operator *(double lhs, Matrix3x3 rhs)
	{
		return rhs * lhs;
	}

	public static Matrix3x3 operator +(Matrix3x3 lhs, Matrix3x3 rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows * cols; i++)
		{
			result[i] = lhs[i] + rhs[i];
		}
		return result;
	}

	public static Matrix3x3 CreateTranslation(Vec3 translation)
	{
		return new Matrix3x3(
			1.0f, 0.0f, 0.0f,
			0.0f, 1.0f, 0.0f,
			translation.x, translation.y, translation.z
		);
	}

	public static Matrix3x3 operator *(Matrix3x3 lhs, Matrix3x3 rhs)
	{
		Matrix3x3 result = new Matrix3x3();
		for (int i = 0; i &lt; rows; i++)
		{
			for (int j = 0; j &lt; cols; j++)
			{
				double sum = 0;
				for (int k = 0; k &lt; cols; k++)
				{
					sum += lhs[i * cols + k] * rhs[k * cols + j];
				}
				result[i * cols + j] = sum;
			}
		}
		return result;
	}
}

public class RotoTranslation
{
    private readonly Vec3 origin;
    private readonly double cosTheta;
    private readonly double sinTheta;
    private readonly Vec3 axis;
    private readonly Matrix3x3 rotationMatrix;
    private readonly Matrix3x3 translationMatrix;
    private readonly Matrix3x3 invTranslationMatrix;

    public RotoTranslation(Vec3 origin, Vec3 start, Vec3 end, double angle_rad)
    {
        this.origin = origin;
        this.axis = Vec3.Normalize(end - start);
        this.cosTheta = Math.Cos(angle_rad);
        this.sinTheta = Math.Sin(angle_rad);

        Matrix3x3 uOuter = Vec3.OuterProduct_mat(axis, axis);
        Matrix3x3 uCross = new Matrix3x3(
                                           0.0f, -axis.z, axis.y,
                                           axis.z, 0.0f, -axis.x,
                                          -axis.y, axis.x, 0.0f
                                        );

        rotationMatrix = cosTheta * Matrix3x3.Identity()
                                 + (1.0f - cosTheta) * uOuter
                                 + sinTheta * uCross;

        translationMatrix = Matrix3x3.CreateTranslation(-origin);
        rotationMatrix = rotationMatrix * translationMatrix;
        invTranslationMatrix = Matrix3x3.CreateTranslation(origin);
    }

    public Vec3 RotateVector(Vec3 vector)
    {
        Vec3 transformedVector = Vec3.TransformNormal(vector - origin, rotationMatrix);
        return Vec3.Transform(transformedVector, invTranslationMatrix);
    }
}

[TestClass]
public class RotoTranslationUnitTest
{
    [TestMethod]
    public void TestMethod1()
    {
        Vec3 origin = new Vec3(1, 1, 1);
        Vec3 start = new Vec3(1, 1, 1);
        Vec3 end = new Vec3(4, 4, 4);
        Vec3 candidate = new Vec3(3,3,3);

        double degrees = 360;
        degrees = degrees * (Math.PI / 180.0);

        RotoTranslation rot = new RotoTranslation(origin, start, end, degrees);

        Vec3 rotated = rot.RotateVector(candidate);

        Assert.AreEqual(candidate[0], rotated[0]);
        Assert.AreEqual(candidate[1], rotated[1]);
        Assert.AreEqual(candidate[2], rotated[2]);
    }
}

答案1

得分: 1

以下是翻译好的代码部分:

你的问题出在这个方法中

public static Matrix3x3 CreateTranslation(Vec3 translation)
{
    return new Matrix3x3(
        1.0f, 0.0f, 0.0f,
        0.0f, 1.0f, 0.0f,
        translation.x, translation.y, translation.z
    );
}

要表示3D中的偏移量你需要一个4x4的矩阵排列如下

| 1    0    0    x |
| 0    1    0    y |
| 0    0    1    z |
| 0    0    0    1 |

不要使用矩阵运算处理平移只需更改代码以使用线性代数

public RotoTranslation(Vec3 origin, Vec3 start, Vec3 end, double angle_rad)
{
    this.origin = origin;
    this.axis = Vec3.Normalize(end - start);
    this.cosTheta = Math.Cos(angle_rad);
    this.sinTheta = Math.Sin(angle_rad);

    Matrix3x3 uOuter = Vec3.OuterProduct_mat(axis, axis);
    Matrix3x3 uCross = new Matrix3x3(
                                       0.0f, -axis.z, axis.y,
                                       axis.z, 0.0f, -axis.x,
                                      -axis.y, axis.x, 0.0f
                                    );

    rotationMatrix = cosTheta * Matrix3x3.Identity()
                             + (1.0f - cosTheta) * uOuter
                             + sinTheta * uCross;

}

public Vec3 RotateVector(Vec3 vector)
{
    Vec3 transformedVector = vector - origin;
    transformedVector = Vec3.Transform(transformedVector, rotationMatrix );
    return transformedVector + origin;
}

'translationMatrix''InvTranslationMatrix' 不需要你已经存储了 'origin' 向量这就是你需要的一切

如果还有其他需要翻译的内容,请继续提问。

英文:

Your problem is in this method

public static Matrix3x3 CreateTranslation(Vec3 translation)
{
return new Matrix3x3(
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
translation.x, translation.y, translation.z
);
}

To represent an offset in 3D with a matrix you need a 4×4 matrix arranged as follows

                    | 1    0    0    x |
translate3(x,y,z) = | 0    1    0    y |
| 0    0    1    z |
| 0    0    0    1 |

Instead of handling the translation with a matrix operation, just change the code to use linear algebra

public RotoTranslation(Vec3 origin, Vec3 start, Vec3 end, double angle_rad)
{
this.origin = origin;
this.axis = Vec3.Normalize(end - start);
this.cosTheta = Math.Cos(angle_rad);
this.sinTheta = Math.Sin(angle_rad);
Matrix3x3 uOuter = Vec3.OuterProduct_mat(axis, axis);
Matrix3x3 uCross = new Matrix3x3(
0.0f, -axis.z, axis.y,
axis.z, 0.0f, -axis.x,
-axis.y, axis.x, 0.0f
);
rotationMatrix = cosTheta * Matrix3x3.Identity()
+ (1.0f - cosTheta) * uOuter
+ sinTheta * uCross;
}
public Vec3 RotateVector(Vec3 vector)
{
Vec3 transformedVector = vector - origin;
transformedVector = Vec3.Transform(transformedVector, rotationMatrix );
return transformedVector + origin;
}

translationMatrix and InvTranslationMatrix are not needed. You have the origin vector stored and that all you need.

huangapple
  • 本文由 发表于 2023年4月17日 22:32:05
  • 转载请务必保留本文链接:https://go.coder-hub.com/76036276.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定