计算风速连续高于先前数值时的时间段。

huangapple go评论74阅读模式
英文:

Calculate a duration of time when the wind speed was continiously higher than previous value

问题

这是您的数据框架,

计算风速连续高于先前数值时的时间段。

我想添加一列,显示风速 (Скорость ветра, м/с) 连续高于前一个值的时间(秒)。我的尝试结果不正确,

df['seconds_until'] = df.apply(lambda x: pd.to_datetime(df.loc[(df['Скорость ветра, м/с'] < x['Скорость ветра, м/с']) & (df['DateTime'] > x['DateTime']), 'DateTime'].min()) - pd.to_datetime(x['DateTime']), axis=1)
df
英文:

here is my dataframe,

计算风速连续高于先前数值时的时间段。

I want to add a new column, which shows how long (seconds) the wind speed (Скорость ветра, м/с) was continuously greater than previous value. What i tried is working wrong,

df[&#39;seconds_until&#39;] = df.apply(lambda x: pd.to_datetime(df.loc[(df[&#39;Скорость ветра, м/с&#39;] &lt; x[&#39;Скорость ветра, м/с&#39;]) &amp; (df[&#39;DateTime&#39;] &gt; x[&#39;DateTime&#39;]), &#39;DateTime&#39;].min()) - pd.to_datetime(x[
&#39;DateTime&#39;]), axis=1)
df

答案1

得分: 1

你可以使用以下代码:

group = df['Скорость ветра, м/с'].diff().lt(0).cumsum()

g = df.groupby(group)['Date'].transform

df['duration'] = g('max') - g('min')

请注意,代码中的变量名和函数名未翻译,保持原样。

英文:

You can use:
Code:

group = df[&#39;Скорость ветра, м/с&#39;].diff().lt(0).cumsum()

g = df.groupby(group)[&#39;Date&#39;].transform

df[&#39;duration&#39;] = g(&#39;max&#39;)-g(&#39;min&#39;)

答案2

得分: 1

我使用了一个掩码来识别风速的增加。接下来,我累积风速并在0上重置。

df=pd.read_csv("https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv",parse_dates=["date"])

df.set_index("date",inplace=True)
df=df.sort_index()
df.columns

df["mark"]=df.wind.shift(1)<df.wind
df["wind_incr"]=df.wind.mask(~df.mark,0)

prev_accum=0
accum=0
for index,row in df.iterrows():
    if row.wind_incr>prev_accum:
        accum+=row.wind_incr
    else:
        accum=0
    df.loc[index,"accumulative"]=accum
    prev_accum=accum

df["accumulative"].plot()
plt.show()

这是您提供的代码的翻译部分。

英文:

I used a mask to identify increasing wind speeds. Next, I accumulate the wind speeds and reset on 0

df=pd.read_csv(&quot;https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv&quot;,parse_dates=[&quot;date&quot;])

df.set_index(&quot;date&quot;,inplace=True)
df=df.sort_index()
df.columns

df[&quot;mark&quot;]=df.wind.shift(1)&lt;df.wind
df[&quot;wind_incr&quot;]=df.wind.mask(~df.mark,0)

prev_accum=0
accum=0
for index,row in df.iterrows():
    if row.wind_incr&gt;prev_accum:
        accum+=row.wind_incr
    else:
        accum=0
    df.loc[index,&quot;accumulative&quot;]=accum
    prev_accum=accum

df[&quot;accumulative&quot;].plot()
plt.show()

huangapple
  • 本文由 发表于 2023年4月17日 19:34:22
  • 转载请务必保留本文链接:https://go.coder-hub.com/76034728.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定