如何计算多项式概率值?

huangapple go评论74阅读模式
英文:

How can I calculate the multinomial probability values?

问题

I understand you're trying to calculate the coefficients for the trinomial expansion, and you've made several attempts to modify the code. To achieve the desired output, you should adjust the values of k to match your desired coefficients. Here's the modified code for trinomial expansion:

desired_outputs = [1, 3, 5, 7, 9]

for n in range(5):
    print([multinomial_probability(n=n, k=[k, n - 2 * k, k], p=[1/3, 1/3, 1/3]) for k in range(desired_outputs[n] // 2 + 1)])

This code should produce the coefficients for the trinomial expansion as shown in your desired output.

英文:

I am trying to write a function that finds the multinomial expansion. In order to do that I modified the binomial probability function;

From:

f(n, k, p) = n! / (k! * (n - k)!) * p<sup>k</sup> * (1 - p)<sup>(n - k)</sup>

To:

f(n, k, p) = n! / (k[0]! * k[1]! * ... * k[x]!) * p[0]<sup>k[0]</sup> * p[1]<sup>k[1]</sup> * ... p[x]<sup>k[x]</sup>

The codes are:

from math import prod


def factorial(n: int) -&gt; int:
    r = 1
    for i in range(1, n + 1):
        r *= i
    return r


def combination(n: int, k: list) -&gt; float:
    return factorial(n) / prod(map(factorial, k))


def multinomial_probability(n: int, k: list, p: list) -&gt; float:
    return combination(n, k) * prod(map(pow, p, k))

To get the coefficients of binomial expansion, I am calling the multinomial_probability function with the following arguments:

for n in range(5):
    print([multinomial_probability(n=n, k=[k, n - k], p=[1/2, 1/2]) for k in range(n + 1)])

The result I get is below and it's the correct result:

[1.0]
[0.5, 0.5]
[0.25, 0.5, 0.25]
[0.125, 0.375, 0.375, 0.125]
[0.0625, 0.25, 0.375, 0.25, 0.0625]

Now I am thinking how to find the coefficients of the trinomial expansion.

In order to do that, I called the multinomial_probability function with the following arguments, despite I knew that it was not going to give me the correct result.

for n in range(5):
    print([multinomial_probability(n=n, k=[m, k - m, n - k], p=[1/3, 1/3, 1/3]) for k in range(n + 1) for m in range(k + 1)])

The above code printed the following result:

[1.0]
[0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
[0.1111111111111111, 0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111]
[0.03703703703703703, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.03703703703703703, 0.1111111111111111, 0.1111111111111111, 0.03703703703703703]
[0.012345679012345677, 0.0493827160493827, 0.0493827160493827, 0.07407407407407407, 0.14814814814814814, 0.07407407407407407, 0.0493827160493827, 0.14814814814814814, 0.14814814814814814, 0.0493827160493827, 0.012345679012345677, 0.0493827160493827, 0.07407407407407407, 0.0493827160493827, 0.012345679012345677]

The number of elements of the lists I would like to get are 1, 3, 5, 9, 11 in order. The code I wrote produces lists with element numbers of 1, 3, 6, 10, 15, and the probabilities are calculated according to the number of elements of these lists.

So the code I wrote produces lists with element numbers of 1, 3, 6, 10, 15, and the probabilities are calculated according to the number of elements of these lists. We can't give decimal numbers to k or m either. Multiplying two ints does not yield 1, 3, 5, 7, 9 in order.

Now, I am changing the code as below:

desired_outputs = [1, 3, 5, 7, 9]
for n in range(5):
    print([multinomial_probability(n=n, k=[k, n - 2 * k, k], p=[1/3, 1/3, 1/3]) for k in range(desired_outputs[n])])

The output I get is like this:

[1.0]
[0.3333333333333333, 0.3333333333333333, 0.08333333333333334]
[0.1111111111111111, 0.2222222222222222, 0.055555555555555566, 0.006172839506172837, 0.00038580246913580245]
[0.03703703703703703, 0.2222222222222222, 0.05555555555555555, 0.0061728395061728366, 0.00038580246913580234, 1.5432098765432092e-05, 4.286694101508915e-07]
[0.012345679012345677, 0.14814814814814814, 0.07407407407407407, 0.008230452674897117, 0.0005144032921810698, 2.0576131687242793e-05, 5.71559213534522e-07, 1.166447374560249e-08, 1.8225740227503888e-10]

This is not correct either.

I change k like this:

desired_outputs = [1, 3, 5, 7, 9]
for n in range(5):
    print([multinomial_probability(n=n, k=[k, n - k - 1, 1], p=[1/3, 1/3, 1/3]) for k in range(desired_outputs[n])])

And this produces the following output:

[1.0]
[0.3333333333333333, 0.3333333333333333, 0.16666666666666669]
[0.2222222222222222, 0.2222222222222222, 0.1111111111111111, 0.037037037037037035, 0.009259259259259257]
[0.1111111111111111, 0.2222222222222222, 0.1111111111111111, 0.03703703703703703, 0.009259259259259259, 0.001851851851851851, 0.0003086419753086419]
[0.0493827160493827, 0.14814814814814814, 0.14814814814814814, 0.0493827160493827, 0.012345679012345677, 0.0024691358024691353, 0.0004115226337448558, 5.878894767783656e-05, 7.348618459729569e-06]

What kind of change I should make in order to get the coefficients of the following output (trinomial expansion)?

如何计算多项式概率值?

Thanks in advance...

答案1

得分: 2

I think you need a function partitions(n, d) to find all the ways to divide a power n onto d variables.

Then you can calculate multicomb(n, k) for each k in partitions(n, d).

Here is the code for the partitions function:

from itertools import combinations_with_replacement

def partitions(n: int, d: int):
    for k in combinations_with_replacement(range(n + 1), d - 1):
        yield diff(k + (n,))

Please note that I've omitted the code for diff and other functions as per your request.

英文:

I think you need a function partitions(n, d) to find all the ways to divide a power n onto d variables.

Then you can calculate multicomb(n, k) for each k in partitions(n, d)

from math import prod, factorial
from itertools import combinations_with_replacement
from string import ascii_lowercase as alphabet
from typing import Iterator

def multicomb(n: int, k: list) -&gt; int:
    &#39;&#39;&#39;assume sum(k) == n&#39;&#39;&#39;
    return factorial(n) // prod(map(factorial, k))

def diff(k: list) -&gt; tuple:
    &#39;&#39;&#39;un-cumsum a list of cumulative sums&#39;&#39;&#39;
    result = []
    c = 0
    for x in k:
        result.append(x - c)
        c = x
    return tuple(result)

def partitions(n: int, d: int) -&gt; Iterator[int]:
    for k in combinations_with_replacement(range(n+1), d-1):
        yield diff(k+(n,))

def prettyfactor(c: int) -&gt; str:
    return str(c) if c != 1 else &#39;&#39;

def prettyvar(xi: int, ki: int) -&gt; str:
    if ki == 0:
        return &#39;&#39;
    elif ki == 1:
        return str(xi)
    else:
        return f&#39;{xi}**{ki}&#39;

def product_expansion(n: int, d: int) -&gt; str:
    variables = alphabet[:d] # assume d &lt;= 26
    return &#39; + &#39;.join(
        prettyfactor(multicomb(n,k)) + &#39; &#39; + &#39; &#39;.join(prettyvar(xi,ki) for xi,ki in zip(variables, k))
        for k in partitions(n, d)
    )
print(product_expansion(2, 2)) # (a + b)**2
  b**2 + 2 a b +  a**2 

print(product_expansion(3, 2)) # (a + b)**3
  b**3 + 3 a b**2 + 3 a**2 b +  a**3 

print(product_expansion(2, 3)) # (a + b + c)**2
   c**2 + 2  b c +   b**2  + 2 a  c + 2 a b  +  a**2  

print(product_expansion(3, 3)) # (a + b + c)**3
   c**3 + 3  b c**2 + 3  b**2 c +   b**3  + 3 a  c**2 + 6 a b c + 3 a b**2  + 3 a**2  c + 3 a**2 b  +  a**3  

I wrote function product_expansion to return a string representing the expanded product (a + b + c + ...)**n.

Instead we can go back to your probabilities question. We want to return the probability of each possible combination. An appropriate return value is a dict, mapping combinations to probabilities.

def weighted_dice_probabilities(n: int, p: list) -&gt; dict:
    &#39;&#39;&#39;roll n identical weighted dice
    face i has probability p[i]
    return a dict mapping each possible outcome to its proba&#39;&#39;&#39;
    d = len(p)
    return {
        k: multicomb(n, k) * prod(map(pow, p, k))
        for k in partitions(n, d)
    }

print(weighted_dice_probabilities(0, [1/3, 1/3, 1/3]))
{(0, 0, 0): 1.0}
# roll no die, get no result with probability 1

print(weighted_dice_probabilities(1, [1/3, 1/3, 1/3]))
{(0, 0, 1): 0.3333, (0, 1, 0): 0.3333, (1, 0, 0): 0.3333}
# roll 1 die, get each face with probability 1/3

print(weighted_dice_probabilities(2, [1/3, 1/3, 1/3]))
{(0, 0, 2): 0.1111, (0, 1, 1): 0.2222, (0, 2, 0): 0.1111,
 (1, 0, 1): 0.2222, (1, 1, 0): 0.2222, (2, 0, 0): 0.1111}
# roll 2 dice, get each couple of faces with proba 2/9 or each pair with proba 1/9

print(weighted_dice_probabilities(3, [1/3, 1/3, 1/3]))
{(0, 0, 3): 0.037037, (0, 1, 2): 0.111111, (0, 2, 1): 0.111111, (0, 3, 0): 0.037037,
 (1, 0, 2): 0.111111, (1, 1, 1): 0.222222, (1, 2, 0): 0.111111,
 (2, 0, 1): 0.111111, (2, 1, 0): 0.111111, (3, 0, 0): 0.037037}
# roll 3 dice, get each triple with proba 1/27, or each one-face-plus-a-pair with proba 1/9, or get three distinct faces with proba 2/9.

答案2

得分: 1

Here is the algorithm you provided:

from math import prod


def factorial(n: int) -> int:
    r = 1
    for i in range(1, n + 1):
        r *= i
    return r


def combination(n: int, k: list) -> float:
    return factorial(n) / prod(map(factorial, k))


def multinomial_probability(n: int, k: list, p: list) -> float:
    return combination(n, k) * prod(map(pow, p, k))


def product(n: int, r: int) -> list:
    return [[i, *p] for i in range(n + 1) for p in product(n, r - 1)] if r else [[]]


def k_values(n: int, r: int) -> list:
    return [i for i in product(n, r) if sum(i) == n]


for n in range(5):
    print([multinomial_probability(n=n, k=k, p=[1/3, 1/3, 1/3]) for k in k_values(n, 3)])

I have removed the HTML escape codes for "->" and replaced them with the correct "->" symbol in the code.

英文:

@Stef

Here is the algorithm I followed:

from math import prod


def factorial(n: int) -&gt; int:
    r = 1
    for i in range(1, n + 1):
        r *= i
    return r


def combination(n: int, k: list) -&gt; float:
    return factorial(n) / prod(map(factorial, k))


def multinomial_probability(n: int, k: list, p: list) -&gt; float:
    return combination(n, k) * prod(map(pow, p, k))


def product(n: int, r: int) -&gt; list:
    return [[i, *p] for i in range(n + 1) for p in product(n, r - 1)] if r else [[]]


def k_values(n: int, r: int) -&gt; list:
    return [i for i in product(n, r) if sum(i) == n]


for n in range(5):
    print([multinomial_probability(n=n, k=k, p=[1/3, 1/3, 1/3]) for k in k_values(n, 3)])

答案3

得分: 0

@Stef,你对这个算法有什么看法?

英文:

@Stef, what do you think about this algorithm?

def k_values(n: int, r: int):
    length = r

    def filtered_product(_n, _r):
        return (
            [
                v for i in range(_n + 1) for c in filtered_product(_n, _r - 1)
                if (v := [i, *c]) and (sum(v) == _n if len(v) == length else True)
            ]
            if _r else [[]]
        )

    return filtered_product(n, r)

答案4

得分: 0

@Stef
代码现在怎么样了?

注意:顺便说一下,函数应该是f(n, r - 1),而不是f(n - i, r - 1)

与此同时,我非常感谢您。

def k_values(n, r, stop: int = 0):
    return (
        [
            v for k in k_values(n, r - 1, stop + 1) for i in range(n + 1)
            if len(v := [i, *k]) != r + stop or sum(v) == n
        ]
        if r else [[]]
    )
英文:

@Stef
How is the code now?

Note: By the way, the function should be f(n, r - 1), not f(n - i, r - 1).

In the meanwhile, I am thankful to you a lot.

def k_values(n, r, stop: int = 0):
    return (
        [
            v for k in k_values(n, r - 1, stop + 1) for i in range(n + 1)
            if len(v := [i, *k]) != r + stop or sum(v) == n
        ]
        if r else [[]]
    )

huangapple
  • 本文由 发表于 2023年4月17日 17:39:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/76033717.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定