英文:
Is it possible to split a pandas column after last integer?
问题
I am trying to split a pandas column into two separate, where the first should contain just the date and the second string. But I don't want to split it after a certain character, like counting where the last integer instead I want to make a code that is applicable in general.
My col looks like this :
Column A |
---|
01.01.2000John Doe |
01.01.2002Jane Doe |
And I want it to look like this:
Column A | Column B |
---|---|
01.01.2000 | Johne Doe |
01.01.2001 | Jane Doe |
英文:
I am trying to split a pandas column into two separate, where the first should contain just the date and the second string. But I don't want to split it after a certain character, like counting where the last integer instead I want to make a code that is applicable in general.
My col looks like this :
Column A |
---|
01.01.2000John Doe |
01.01.2002Jane Doe |
And I want it to look like this:
Column A | Column B |
---|---|
01.01.2000 | Johne Doe |
01.01.2001 | Jane Doe |
df_t['date'] = df_t['date_time'].str[0:19]
df_t["name"] = df_t["date_time"].str[19: ]
tid = df_t.drop(["date_time"], axis = 1)
This is the way I did it but I need a general way as mentioned above
答案1
得分: 1
You can use str.extract
along with regular expressions in your code to extract date and name information from the given data.
import pandas as pd
# 示例数据
data = {'Column A': ['01.01.2000John Doe', '01.01.2002Jane Doe']}
df = pd.DataFrame(data)
# 正则表达式模式
pattern = r'(?P<Date>\d{2}\.\d{2}\.\d{4})(?P<Name>.*)&'
# 将日期和姓名提取到单独的列中
df[['Column A', 'Column B']] = df['Column A'].str.extract(pattern)
print(df)
Explanation:
pattern
变量包含了正则表达式模式。表达式(?P<Date>\d{2}\.\d{2}\.\d{4})
用于捕获日期,而(?P<Name>.*)
用于捕获姓名。- 使用
?P<>
语法对捕获的组进行命名,以便更容易在DataFrame中创建新列。
英文:
You can use str.extract
together with regular expressions:
import pandas as pd
# Sample data
data = {'Column A': ['01.01.2000John Doe', '01.01.2002Jane Doe']}
df = pd.DataFrame(data)
# Regular expression pattern
pattern = r'(?P<Date>\d{2}\.\d{2}\.\d{4})(?P<Name>.*)'
# Extracting the date and name into separate columns
df[['Column A', 'Column B']] = df['Column A'].str.extract(pattern)
print(df)
Explanation:
- The pattern variable contains the regular expression pattern. The expression (?P<Date>\d{2}.\d{2}.\d{4}) captures the date, and (?P<Name>.*) captures the name.
- The ?P<> syntax is used to name the captured groups, which makes it easier to create the new columns in the DataFrame.
EDIT
import pandas as pd
# Sample data
data = {
'1Column A': ['2000-01-01 00:00:00John Doe', '2002-01-01 00:00:00Jane Doe'],
'2Column B': ['2000-01-01 00:00:00Alice', '2002-01-01 00:00:00Bob'],
'3Column C': ['Some other data', 'Not a date and name'],
}
df = pd.DataFrame(data)
# Regular expression pattern
pattern = r'(?P<Date>\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})(?P<Name>.*)'
# Iterate through columns and apply the pattern conditionally
for col in df.columns:
if col.startswith("1") or col.startswith("2"):
# Extract date and name into separate columns with suffixes
df[[f"{col}_date", f"{col}_name"]] = df[col].str.extract(pattern)
# Drop the original column
df.drop(col, axis=1, inplace=True)
print(df)
答案2
得分: 1
你可以简单地使用索引:
df['Column A'], df['Column B'] = df['Column A'].str[:10], df['Column A'].str[10:]
print(df)
# 输出
Column A Column B
0 01.01.2000 John Doe
1 01.01.2002 Jane Doe
如果你想转换成datetime64
:
df['Column A'], df['Column B'] = \
pd.to_datetime(df['Column A'].str[:10], dayfirst=True), df['Column A'].str[10:]
print(df)
# 输出
Column A Column B
0 2000-01-01 John Doe
1 2002-01-01 Jane Doe
英文:
You can simply use indexing:
df['Column A'], df['Column B'] = df['Column A'].str[:10], df['Column A'].str[10:]
print(df)
# Output
Column A Column B
0 01.01.2000 John Doe
1 01.01.2002 Jane Doe
If you want to convert as datetime64
:
df['Column A'], df['Column B'] = \
pd.to_datetime(df['Column A'].str[:10], dayfirst=True), df['Column A'].str[10:]
print(df)
# Output
Column A Column B
0 2000-01-01 John Doe
1 2002-01-01 Jane Doe
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论