ValueError: 形状 (None, 1) 和 (None, 30, 30, 3, 1) 不兼容

huangapple go评论64阅读模式
英文:

ValueError: Shapes (None, 1) and (None, 30, 30, 3, 1) are incompatible

问题

以下是您要翻译的代码部分:

我正在进行一个练习使用卷积神经网络对图像进行分类必须使用OpenCV读取图像。`load_data` 已经实现但我似乎无法实现 `get_model`,因为出现了以下错误

每当我尝试运行这段代码时都会出现错误 `ValueError: 形状 (None, 1) 和 (None, 30, 30, 1) 不兼容`。我已经尝试过搜索但无法理解为什么会发生这个错误如果有人能帮助我理解这个错误是什么以及为什么会发生我将非常感激

```python
import cv2
import numpy as np
import os
import sys
import tensorflow as tf

from sklearn.model_selection import train_test_split

EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4

def main():

    # 检查命令行参数
    if len(sys.argv) not in [2, 3]:
        sys.exit("用法: python traffic.py data_directory [model.h5]")

    # 获取所有图像文件的图像数组和标签
    images, labels = load_data(sys.argv[1])

    # 将数据分为训练集和测试集
    labels = tf.keras.utils.to_categorical(labels)
    x_train, x_test, y_train, y_test = train_test_split(
        np.array(images), np.array(labels), test_size=TEST_SIZE
    )

    # 获取已编译的神经网络模型
    model = get_model()

    # 在训练数据上拟合模型
    model.fit(x_train, y_train, epochs=EPOCHS)

    # 评估神经网络性能
    model.evaluate(x_test,  y_test, verbose=2)

    # 将模型保存到文件
    if len(sys.argv) == 3:
        filename = sys.argv[2]
        model.save(filename)
        print(f"模型已保存到 {filename}。")

def load_data(data_dir):
    """
    从目录 `data_dir` 中加载图像数据。

    假设 `data_dir` 中有一个以每个类别命名的目录,编号从0到NUM_CATEGORIES-1。在每个类别目录内都将有一些图像文件。

    返回元组 `(images, labels)`。`images` 应该是数据目录中所有图像的列表,其中每个图像都以形状为 IMG_WIDTH x IMG_HEIGHT x 3 的numpy数组格式。`labels` 应该是整数标签的列表,表示每个相应的 'images' 的类别。
    """
    images = []
    labels = []
    for i in range(NUM_CATEGORIES):
        path = f'{data_dir}{os.sep}{i}'

        for file in os.listdir(path):
            file_path = f'{path}{os.sep}{file}'

            print(f"读取 {file_path}...")
            image = cv2.imread(file_path)

            image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT))

            images.append(image)
            labels.append(i)

    return (images, labels)

def get_model():
    """
    返回一个已编译的卷积神经网络模型。假设第一层的 `input_shape` 为 `(IMG_WIDTH, IMG_HEIGHT, 3)`。输出层应该有 `NUM_CATEGORIES` 个单元,每个单元对应一个类别。
    """
    # 卷积神经网络
    model = tf.keras.Sequential([
        # 输入
        tf.keras.layers.Dense(1, activation="relu") ,

        # 隐藏层

        # 输出
        tf.keras.layers.Dense(NUM_CATEGORIES)
    ])

    model.compile(
        optimizer="adam",
        loss=tf.keras.losses.CategoricalCrossentropy()
    )

    return model

if __name__ == "__main__":
    main()
英文:

I am doing an exercise to classify images using a convolutional neural network. The images must be read using OpenCV. load_data is already implemented, but I can't seem to implement get_model because of this error.

Whenever I attemp to run this code, I get an error ValueError: Shapes (None, 1) and (None, 30, 30, 1) are incompatible. I have tried searching but I can't understand why this error is occurring. If anyone could help me understand what this error is and why it is happening , I would be very grateful.

import cv2
import numpy as np
import os
import sys
import tensorflow as tf

from sklearn.model_selection import train_test_split

EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4


def main():

    # Check command-line arguments
    if len(sys.argv) is not in [2, 3]:
        sys.exit("Usage: python traffic.py data_directory [model.h5]")

    # Get image arrays and labels for all image files
    images, labels = load_data(sys.argv[1])

    # Split data into training and testing sets
    labels = tf.keras.utils.to_categorical(labels)
    x_train, x_test, y_train, y_test = train_test_split(
        np.array(images), np.array(labels), test_size=TEST_SIZE
    )

    # Get a compiled neural network
    model = get_model()

    # Fit model on training data
    model.fit(x_train, y_train, epochs=EPOCHS)

    # Evaluate neural network performance
    model.evaluate(x_test,  y_test, verbose=2)

    # Save model to file
    if len(sys.argv) == 3:
        filename = sys.argv[2]
        model.save(filename)
        print(f"Model saved to {filename}.")


    def load_data(data_dir):
    """
    Load image data from directory `data_dir`.

    Assume `data_dir` has one directory named after each category, numbered
    0 through NUM_CATEGORIES = 1. Inside each category directory will be some
    number of image files

    Return the tuple `(images, labels)`. `images` should be a list of all
    of the images in the data directory, where each image is formatted as a
    numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should
    be a list of integer labels, representing the categories for each of the
    corresponding 'images'.
    """
    images = []
    labels = []
    for i in range (NUM_CATEGORIES):
        path = f'{data_dir} {os.sep}{i}'

        for file in os.listdir(path):
            file_path = f'{path}{os.sep}{file}'

            print(f"Reading {file_path}...")
            image = cv2.imread(file_path)

            image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT))
            
            images.append(image)
            labels.append(i)

    return (images, labels)

    def get_model():
    """
    Returns a compiled convolutional neural network model. Assume that the
    `input_shape` of the first layer is `(IMG_WIDTH, IMG_HEIGHT, 3)`.
    The output layer should have `NUM_CATEGORIES` units, one for each category.
    """
    # Convolutional Neural Network
    model = tf.keras.Sequential([
        # input
        tf.keras.layers.Dense(1, activation="relu") ,

        # hidden layers

        # output
        tf.keras.layers.Dense(NUM_CATEGORIES)
    ])

    model.compile(
        optimizer="adam",
        loss=tf.keras.losses.CategoricalCrossentropy()
    )

    return model


if __name__ == "__main__":
    main()

答案1

得分: 0

因为你需要一个 CNN,但你只有这个 tf.keras.layers.Dense(1, activation="relu")。这不是 CNN。这是 CNN 的一个示例:https://towardsdatascience.com/coding-a-convolutional-neural-network-cnn-using-keras-sequential-api-ec5211126875

英文:

Because you need a CNN, but you just have this tf.keras.layers.Dense(1, activation="relu"). This is not CNN. Here is an example of CNN https://towardsdatascience.com/coding-a-convolutional-neural-network-cnn-using-keras-sequential-api-ec5211126875

huangapple
  • 本文由 发表于 2023年4月11日 04:23:50
  • 转载请务必保留本文链接:https://go.coder-hub.com/75980449.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定