Polars read_excel 不等于 Pandas read_excel 对于具有 “混合” 类型的列。

huangapple go评论64阅读模式
英文:

Polars read_excel not equal to Pandas read_excel for columns with "mixed" types

问题

I'm trying to read some excel data via Polars.read_excel(), and the data is not identical to the Pandas.read_excel() approach for columns with mixed data. Here's an example to illustrate:

# create sample data, save to excel. 
test = pd.DataFrame(
    {
    'nums':  [1, 2, 3],
    'mixed': [1, 4, '6A'],
    'factor': ['A', 'B', 'C']
    }
)
test.to_excel('test.xlsx', index = False)

# read data using Pandas and Polars. Convert polars version to pandas.
test_pd = pd.read_excel('test.xlsx', engine='openpyxl')

test_pl = pl.read_excel('test.xlsx')
test_pl = test_pl.to_pandas()

# compare the two
print(test_pd)
print(test_pl)
print(test_pd == test_pl)

print(test_pd) and print(test_pl), suggest the data is identical. However, print(test_pd == test_pl) returns the following:

   nums  mixed  factor
0  True  False    True
1  True  False    True
2  True   True    True

Is there something causing the data to not be identical? And is this a Polars (or Arrow) limitation when dealing with object variables? I want the pl.read_excel() / conversion to pandas approach to ultimately yield an identical DataFrame to pd.read_excel().

Thanks!

英文:

I'm trying to read some excel data via Polars.read_excel(), and the data is not identical to the Pandas.read_excel() approach for columns with mixed data.

Here's an example to illustrate:

# create sample data, save to excel. 
test = pd.DataFrame(
    {
    'nums':  [1, 2, 3],
    'mixed': [1, 4, '6A'],
    'factor': ['A', 'B', 'C']
    }
)
test.to_excel('test.xlsx', index = False)

# read data using Pandas and Polars. Convert polars version to pandas.
test_pd = pd.read_excel('test.xlsx', engine='openpyxl')

test_pl = pl.read_excel('test.xlsx')
test_pl = test_pl.to_pandas()

# compare the two
print(test_pd)
print(test_pl)
print(test_pd == test_pl)

print(test_pd) and print(test_pl), suggest the data is identical. However, print(test_pd == test_pl) returns the following:

   nums  mixed  factor
0  True  False    True
1  True  False    True
2  True   True    True

Is there something causing the data to not be identical? And is this a Polars (or Arrow) limitation when dealing with object variables? I want the pl.read_excel() / conversion to pandas approach to ultimately yield an identical DataFrame to pd.read_excel().

Thanks!

答案1

得分: 1

somehow polars made some of your numbers to strings. Look here:

test_pl.iloc[0,1]
'1'

while pandas made integers, where it is possible. The same cell in pandas:

test_pd.iloc[0,1]
1

If you enforce typecast to both tables all cells are equal:

test_pd.astype('string') == test_pl.astype('string')

  nums  mixed  factor
0  True   True    True
1  True   True    True
2  True   True    True
英文:

somehow polars made some of your numbers to strings. Look here:

test_pl.iloc[0,1]
'1'

while pandas made integers, where it is possible. The same cell in pandas:

test_pd.iloc[0,1]
1

If you enforce typecast to both tables all cells are equal:

test_pd.astype('string') == test_pl.astype('string')

  nums  mixed  factor
0  True   True    True
1  True   True    True
2  True   True    True

答案2

得分: 1

Polars 和 Arrow 依赖于严格的数据类型,因此,从根本上来说,是的,这是一个限制。您永远无法拥有一个有时是 Utf8 有时是 Floatxx 的列。

另一方面,Pandas 乐于拥有混合数据类型的列,因为它基本上只是一个 Python 列表。

英文:

Polars and arrow rely on strict data types so ultimately, yes, it's a limitation. You can never have a column that is sometimes Utf8 and sometimes Floatxx.

Pandas, on the other hand, is happy to have a column of mixed data types because it's basically just a python list.

huangapple
  • 本文由 发表于 2023年4月11日 00:45:39
  • 转载请务必保留本文链接:https://go.coder-hub.com/75978949.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定