神经网络:损失递减,但准确性保持不变。

huangapple go评论68阅读模式
英文:

Neural Net: Loss decreasing, but accuracy stays exactly the same

问题

以下是您提供的代码的中文翻译部分:

我对PyTorch还很陌生,刚尝试在MINST数据集上构建了我的第一个神经网络。特别是,我想遵循这个教程:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

我的训练代码如下:

for epoch in range(5): # 一个epoch是对所有数据的一次迭代
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # 获取输入数据(这是一个批次,包括图像和标签的列表)
        inputs, labels = data

        # 重置梯度
        optimizer.zero_grad()

        # 前向传播 + 反向传播 + 优化
        outputs = net(inputs)  # 前向传播
        loss = criterion(outputs, labels)  # 损失
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重

        # 打印统计信息
        running_loss += loss.item()
        if i % 2000 == 1999:  # 每2000个小批次打印一次
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0

    # 每个epoch后计算准确率
    correct = 0
    total = 0

    with torch.no_grad():
        for data in train_loader:
            images, labels = data
            output = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print(correct/total)

print('训练结束')

输出现在让我感到困惑,因为损失似乎显著减小,但准确度在数千个样本上保持完全不变。至少我期望准确度会有所变化(而不是增加),因为损失似乎表明权重正在变化。

完整的笔记本可以在这里找到:https://www.kaggle.com/code/adrianhayler/building-my-first-neural-net-with-pytorch
如有任何帮助,将不胜感激。

英文:

I am new to PyTorch and just tried to build my first Neural Network on the MINST dataset. In particular, I wanted to followed this tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

My training code looks like this:

for epoch in range(5): # a epoch is one iteration over all the data
    
        running_loss = 0.0
        for i, data in enumerate(train_loader, 0):
            # get the inputs (this is a batch, so lists of images & labels)
            inputs, labels = data
            
            # reset the gradient
            optimizer.zero_grad()
            
            # forward + backward + optimize
            outputs = net(inputs) # forward
            loss = criterion(outputs, labels) # loss
            loss.backward() # backward
            optimizer.step() # update
            
            # print statistics
            running_loss += loss.item()
            if i % 2000 == 1999: # print every 2000 mini-batches
                print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
                running_loss = 0.0
            
        # compute accuracy after each epoch
        correct = 0
        total = 0

        with torch.no_grad():
            for data in train_loader:
                images, labels = data
                output = net(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()

        print(correct/total)

print('Training finished')

The output now confuses me, as the loss seems to decrease significantly, but the accuracy remains completely unchanged on thousands of samples. I would at least expect a change in the accuracy (not an increase), as the weights seem to change judging by the loss.

[1,  2000] loss: 1.902
[1,  4000] loss: 1.413
[1,  6000] loss: 1.188
[1,  8000] loss: 0.844
[1, 10000] loss: 0.666
[1, 12000] loss: 0.631
[1, 14000] loss: 0.614
[1, 16000] loss: 0.534
[1, 18000] loss: 0.557
[1, 20000] loss: 0.518
[1, 22000] loss: 0.448
[1, 24000] loss: 0.450
[1, 26000] loss: 0.466
[1, 28000] loss: 0.493
[1, 30000] loss: 0.412
[1, 32000] loss: 0.404
0.09857142857142857
[2,  2000] loss: 0.442
[2,  4000] loss: 0.421
[2,  6000] loss: 0.429
[2,  8000] loss: 0.423
[2, 10000] loss: 0.411
[2, 12000] loss: 0.426
[2, 14000] loss: 0.425
[2, 16000] loss: 0.400
[2, 18000] loss: 0.430
[2, 20000] loss: 0.376
[2, 22000] loss: 0.385
[2, 24000] loss: 0.376
[2, 26000] loss: 0.388
[2, 28000] loss: 0.433
[2, 30000] loss: 0.346
[2, 32000] loss: 0.357
0.09857142857142857
[3,  2000] loss: 0.393
[3,  4000] loss: 0.356
[3,  6000] loss: 0.396
[3,  8000] loss: 0.381
[3, 10000] loss: 0.350
[3, 12000] loss: 0.368
[3, 14000] loss: 0.405
[3, 16000] loss: 0.355
[3, 18000] loss: 0.367
[3, 20000] loss: 0.355
[3, 22000] loss: 0.357
[3, 24000] loss: 0.366
[3, 26000] loss: 0.362
[3, 28000] loss: 0.393
[3, 30000] loss: 0.336
[3, 32000] loss: 0.333
0.09857142857142857
[4,  2000] loss: 0.372
[4,  4000] loss: 0.323
[4,  6000] loss: 0.362
[4,  8000] loss: 0.368
[4, 10000] loss: 0.346
[4, 12000] loss: 0.345
[4, 14000] loss: 0.381
[4, 16000] loss: 0.363
[4, 18000] loss: 0.357
[4, 20000] loss: 0.337
[4, 22000] loss: 0.363
[4, 24000] loss: 0.343
[4, 26000] loss: 0.353
[4, 28000] loss: 0.390
[4, 30000] loss: 0.298
[4, 32000] loss: 0.343
0.09857142857142857
[5,  2000] loss: 0.350
[5,  4000] loss: 0.324
[5,  6000] loss: 0.361
[5,  8000] loss: 0.350
[5, 10000] loss: 0.307
[5, 12000] loss: 0.347
[5, 14000] loss: 0.372
[5, 16000] loss: 0.347
[5, 18000] loss: 0.356
[5, 20000] loss: 0.302
[5, 22000] loss: 0.339
[5, 24000] loss: 0.345
[5, 26000] loss: 0.340
[5, 28000] loss: 0.405
[5, 30000] loss: 0.310
[5, 32000] loss: 0.352
0.09857142857142857
Training finished

The full notebook can be found here: https://www.kaggle.com/code/adrianhayler/building-my-first-neural-net-with-pytorch
Any help is greatly appreciated.

答案1

得分: 0

我找到了问题:

_, predicted = torch.max(outputs.data, 1)

必须更改为:

_, predicted = torch.max(output.data, 1)

outputs 是前向传递的输出,而不是我们迭代的样本。

英文:

I found the problem:

_, predicted = torch.max(outputs.data, 1)

has to be changed to:

_, predicted = torch.max(output.data, 1)

outputs is the output of the forward pass and not the samples we iterate over.

huangapple
  • 本文由 发表于 2023年4月10日 18:35:56
  • 转载请务必保留本文链接:https://go.coder-hub.com/75976333.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定