Groupby, Window and rolling average in Spark

huangapple go评论97阅读模式
英文:

Groupby, Window and rolling average in Spark

问题

我想在大型数据集上使用Pyspark进行分组和滚动平均。由于不熟悉Pyspark,我很难看出我的错误在哪里。为什么这不起作用?

data = pd.DataFrame({'group':['A']*5+['B']*5,
'order':[1,2,3,4,5, 1,2,3,4,5],
'value':[23, 54, 65, 64, 78, 98, 78, 76, 77, 57]})

spark_df = spark.createDataFrame(data)

window_spec = Window.partitionBy("group").orderBy("order").rowsBetween(-1, 0)

计算col_value的滚动平均值

rolling_avg = avg(col("value")).over(window_spec).alias("value_rolling_avg")

按col_group分组并计算col_value的滚动平均值

spark_df.groupby("group").agg(rolling_avg).show()


AnalysisException: [COLUMN_NOT_IN_GROUP_BY_CLAUSE] 表达式"order"既不在分组中,也不是聚合函数。如果您不在乎获取哪个值,请添加到分组中或使用first()(或first_value())包装它。


<details>
<summary>英文:</summary>

I want to do a groupby and do a rolling average on huge dataset using pyspark. Not used to pyspark I struggle to see my mistake here. Why doesn&#39;t this work?  

data = pd.DataFrame({'group':['A']*5+['B']*5,
'order':[1,2,3,4,5, 1,2,3,4,5],
'value':[23, 54, 65, 64, 78, 98, 78, 76, 77, 57]})

spark_df = spark.createDataFrame(data)

window_spec = Window.partitionBy("group").orderBy("order").rowsBetween(-1, 0)

Calculate the rolling average of col_value

rolling_avg = avg(col("value")).over(window_spec).alias("value_rolling_avg")

Group by col_group and col_date and calculate the rolling average of col_value

spark_df.groupby("group").agg(rolling_avg).show()


AnalysisException: [COLUMN_NOT_IN_GROUP_BY_CLAUSE] The expression "order" is neither present in the group by, nor is it an aggregate function. Add to group by or wrap in first() (or first_value()) if you don't care which value you get.;


</details>


# 答案1
**得分**: 1

你正在混合使用窗口函数和聚合函数。 

你可以简单地选择`rolling_avg`来获得你的结果:

spark_df.select(rolling_avg).show()

+-----------------+
|value_rolling_avg|
+-----------------+
| 23.0|
| 38.5|
| 59.5|
| 64.5|
| 71.0|
| 98.0|
| 88.0|
| 77.0|
| 76.5|
| 67.0|
+-----------------+


或者

spark_df.withColumn("value_rolling_avg", rolling_avg).show()

+------+------+------+-----------------+
|group_|order_|value_|value_rolling_avg|
+------+------+------+-----------------+
| A| 1| 23| 23.0|
| A| 2| 54| 38.5|
| A| 3| 65| 59.5|
| A| 4| 64| 64.5|
| A| 5| 78| 71.0|
| B| 1| 98| 98.0|
| B| 2| 78| 88.0|
| B| 3| 76| 77.0|
| B| 4| 77| 76.5|
| B| 5| 57| 67.0|
+------+------+------+-----------------+



<details>
<summary>英文:</summary>

You are mixing window functions and aggregation functions. 

you can simply select `rolling_avg` to get your result : 

spark_df.select(rolling_avg).show()

+-----------------+
|value_rolling_avg|
+-----------------+
| 23.0|
| 38.5|
| 59.5|
| 64.5|
| 71.0|
| 98.0|
| 88.0|
| 77.0|
| 76.5|
| 67.0|
+-----------------+

OR

spark_df.withColumn("value_rolling_avg", rolling_avg).show()

+------+------+------+-----------------+
|group_|order_|value_|value_rolling_avg|
+------+------+------+-----------------+
| A| 1| 23| 23.0|
| A| 2| 54| 38.5|
| A| 3| 65| 59.5|
| A| 4| 64| 64.5|
| A| 5| 78| 71.0|
| B| 1| 98| 98.0|
| B| 2| 78| 88.0|
| B| 3| 76| 77.0|
| B| 4| 77| 76.5|
| B| 5| 57| 67.0|
+------+------+------+-----------------+


</details>



huangapple
  • 本文由 发表于 2023年4月6日 22:24:44
  • 转载请务必保留本文链接:https://go.coder-hub.com/75950655.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定