累积日期范围内的总和

huangapple go评论94阅读模式
英文:

Cumulative sum for specific range of dates

问题

I'm trying to calculate the rowise cumulative sum of Rates from DATE to DATE_following.

我试图计算从DATE到DATE_following的逐行累积总和Rates。

For example:

例如:

  1. library(bizdays)
  2. library(lubridate)
  3. set.seed(1)
  4. dat <- seq.Date(from = as.Date(as.Date("2023-04-06")- days(10)),
  5. to = as.Date(as.Date("2023-04-06")),
  6. by = "day") %>%
  7. data.frame(DATE = .) %>%
  8. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),replace=TRUE),
  9. DATE_following = modified.following(DATE %m+% days(3)))
  10. dat
  11. DATE Rates DATE_following
  12. 1 2023-03-27 9 2023-03-30
  13. 2 2023-03-28 4 2023-03-31
  14. 3 2023-03-29 7 2023-04-01
  15. 4 2023-03-30 1 2023-04-02
  16. 5 2023-03-31 2 2023-04-03
  17. 6 2023-04-01 7 2023-04-04
  18. 7 2023-04-02 2 2023-04-05
  19. 8 2023-04-03 3 2023-04-06
  20. 9 2023-04-04 1 2023-04-07
  21. 10 2023-04-05 5 2023-04-08
  22. 11 2023-04-06 5 2023-04-09

The output i'm trying to get is:

我想要的输出是:

  1. Result: 9+4+7+1 = 21 (the sum of Rates from 2023-03-27 to 2023-03-30 )

  2. Result: 4+7+1+2 = 14 ...

  3. 结果:9+4+7+1 = 21(从2023-03-27到2023-03-30的Rates总和)

  4. 结果:4+7+1+2 = 14...

  1. DATE Rates DATE_following Results
  2. 1 2023-03-27 9 2023-03-30 21
  3. 2 2023-03-28 4 2023-03-31 14
  4. 3 2023-03-29 7 2023-04-01 17
  5. 4 2023-03-30 1 2023-04-02 12
  6. 5 2023-03-31 2 2023-04-03 14
  7. 6 2023-04-01 7 2023-04-04 13
  8. 7 2023-04-02 2 2023-04-05 11
  9. 8 2023-04-03 3 2023-04-06 14
  10. 9 2023-04-04 1 2023-04-07 NA
  11. 10 2023-04-05 5 2023-04-08 NA
  12. 11 2023-04-06 5 2023-04-09 NA

Is it possible to get this result using dplyr functions like rowwise() and cumsum()? My main problem is that I don't know how to define this condition within these functions.

是否可以使用dplyr函数如rowwise()和cumsum()来获得这个结果?我的主要问题是不知道如何在这些函数内定义这个条件。

英文:

I'm trying to calculate the rowise cumulative sum of Rates from DATE to DATE_following.

For example:

  1. library(tidyverse)
  2. library(bizdays)
  3. library(lubridate)
  4. set.seed(1)
  5. dat &lt;- seq.Date(from = as.Date(as.Date(&quot;2023-04-06&quot;)- days(10)),
  6. to = as.Date(as.Date(&quot;2023-04-06&quot;)),
  7. by = &quot;day&quot;) %&gt;%
  8. data.frame(DATE = .) %&gt;%
  9. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),replace=TRUE),
  10. DATE_following = modified.following(DATE %m+% days(3)))
  11. dat
  12. DATE Rates DATE_following
  13. 1 2023-03-27 9 2023-03-30
  14. 2 2023-03-28 4 2023-03-31
  15. 3 2023-03-29 7 2023-04-01
  16. 4 2023-03-30 1 2023-04-02
  17. 5 2023-03-31 2 2023-04-03
  18. 6 2023-04-01 7 2023-04-04
  19. 7 2023-04-02 2 2023-04-05
  20. 8 2023-04-03 3 2023-04-06
  21. 9 2023-04-04 1 2023-04-07
  22. 10 2023-04-05 5 2023-04-08
  23. 11 2023-04-06 5 2023-04-09

The output i'm trying to get is:

  1. Result: 9+4+7+1 = 21 (the sum of Rates from 2023-03-27 to 2023-03-30 )
  2. Result: 4+7+1+2 = 14 ...
  1. DATE Rates DATE_following Results
  2. 1 2023-03-27 9 2023-03-30 21
  3. 2 2023-03-28 4 2023-03-31 14
  4. 3 2023-03-29 7 2023-04-01 17
  5. 4 2023-03-30 1 2023-04-02 12
  6. 5 2023-03-31 2 2023-04-03 14
  7. 6 2023-04-01 7 2023-04-04 13
  8. 7 2023-04-02 2 2023-04-05 11
  9. 8 2023-04-03 3 2023-04-06 14
  10. 9 2023-04-04 1 2023-04-07 NA
  11. 10 2023-04-05 5 2023-04-08 NA
  12. 11 2023-04-06 5 2023-04-09 NA

Is it possible to get this result using dplyr functions like rowwise() and cumsum()? My main problem is that I don't know how to define this condition within these functions.

答案1

得分: 4

如果您想要对连续的四个Rates进行滚动求和,您可以使用zoorollsum()函数:

  1. library(dplyr)
  2. library(zoo)
  3. dat %>%
  4. mutate(Result = rollsum(Rates, k = 4, fill = NA_real_, align = "left"))

这将返回:

  1. # A tibble: 11 × 5
  2. no DATE Rates DATE_following Result
  3. <dbl> <date> <dbl> <date> <dbl>
  4. 1 1 2023-03-27 9 2023-03-30 21
  5. 2 2 2023-03-28 4 2023-03-31 14
  6. 3 3 2023-03-29 7 2023-04-01 17
  7. 4 4 2023-03-30 1 2023-04-02 12
  8. 5 5 2023-03-31 2 2023-04-03 14
  9. 6 6 2023-04-01 7 2023-04-04 13
  10. 7 7 2023-04-02 2 2023-04-05 11
  11. 8 8 2023-04-03 3 2023-04-06 14
  12. 9 9 2023-04-04 1 2023-04-07 NA
  13. 10 10 2023-04-05 5 2023-04-08 NA
  14. 11 11 2023-04-06 5 2023-04-09 NA

基于LeMarque的评论,还有一个稍微通用的答案:

  1. dat2 %>%
  2. mutate(days = as.integer(DATE_following - DATE) + 1,
  3. res = rollapply(data = Rates, width = days, FUN = sum, align = "left", fill = NA_real_))

这将返回:

  1. # A tibble: 11 × 6
  2. no DATE Rates DATE_following days res
  3. <dbl> <date> <dbl> <date> <dbl> <dbl>
  4. 1 1 2023-03-27 9 2023-03-30 4 21
  5. 2 2 2023-03-28 4 2023-03-31 4 14
  6. 3 3 2023-03-29 7 2023-04-01 4 17
  7. 4 4 2023-03-30 1 2023-04-02 4 12
  8. 5 5 2023-03-31 2 2023-04-10 11 NA
  9. 6 6 2023-04-01 7 2023-04-04 4 13
  10. 7 7 2023-04-02 2 2023-04-05 4 11
  11. 8 8 2023-04-03 3 2023-04-06 4 14
  12. 9 9 2023-04-04 1 2023-04-07 4 NA
  13. 10 10 2023-04-05 5 2023-04-08 4 NA
  14. 11 11 2023-04-06 5 2023-04-09 4 NA

由于第5行的DATE_following在数据中不存在,此版本返回NA。此外,这个版本不是对连续的四天进行求和,而是计算了DATEDATE_following之间的天数,并将它们应用于滚动求和。

英文:

If you want a rolling sum for four consecutive Rates, you could use zoos rollsum() function:

  1. library(dplyr)
  2. library(zoo)
  3. dat %&gt;%
  4. mutate(Result = rollsum(Rates, k = 4, fill = NA_real_, align = &quot;left&quot;))

This returns

  1. # A tibble: 11 &#215; 5
  2. no DATE Rates DATE_following Result
  3. &lt;dbl&gt; &lt;date&gt; &lt;dbl&gt; &lt;date&gt; &lt;dbl&gt;
  4. 1 1 2023-03-27 9 2023-03-30 21
  5. 2 2 2023-03-28 4 2023-03-31 14
  6. 3 3 2023-03-29 7 2023-04-01 17
  7. 4 4 2023-03-30 1 2023-04-02 12
  8. 5 5 2023-03-31 2 2023-04-03 14
  9. 6 6 2023-04-01 7 2023-04-04 13
  10. 7 7 2023-04-02 2 2023-04-05 11
  11. 8 8 2023-04-03 3 2023-04-06 14
  12. 9 9 2023-04-04 1 2023-04-07 NA
  13. 10 10 2023-04-05 5 2023-04-08 NA
  14. 11 11 2023-04-06 5 2023-04-09 NA

A slightly more general answer based on LeMarque's comment:

  1. dat2 %&gt;%
  2. mutate(days = as.integer(DATE_following - DATE) + 1,
  3. res = rollapply(data = Rates, width = days, FUN = sum, align = &quot;left&quot;, fill = NA_real_))

This returns

  1. # A tibble: 11 &#215; 6
  2. no DATE Rates DATE_following days res
  3. &lt;dbl&gt; &lt;date&gt; &lt;dbl&gt; &lt;date&gt; &lt;dbl&gt; &lt;dbl&gt;
  4. 1 1 2023-03-27 9 2023-03-30 4 21
  5. 2 2 2023-03-28 4 2023-03-31 4 14
  6. 3 3 2023-03-29 7 2023-04-01 4 17
  7. 4 4 2023-03-30 1 2023-04-02 4 12
  8. 5 5 2023-03-31 2 2023-04-10 11 NA
  9. 6 6 2023-04-01 7 2023-04-04 4 13
  10. 7 7 2023-04-02 2 2023-04-05 4 11
  11. 8 8 2023-04-03 3 2023-04-06 4 14
  12. 9 9 2023-04-04 1 2023-04-07 4 NA
  13. 10 10 2023-04-05 5 2023-04-08 4 NA
  14. 11 11 2023-04-06 5 2023-04-09 4 NA

Since the DATE_following in row 5 isn't present in the data, this version returns NA. Furthermore this version doesn't sum four consecutive days but calculates the days between DATE and DATE_following and applies them to the rolling sum.

Data

  1. dat &lt;- structure(list(no = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), DATE = structure(c(19443,
  2. 19444, 19445, 19446, 19447, 19448, 19449, 19450, 19451, 19452,
  3. 19453), class = &quot;Date&quot;), Rates = c(9, 4, 7, 1, 2, 7, 2, 3, 1,
  4. 5, 5), DATE_following = structure(c(19446, 19447, 19448, 19449,
  5. 19450, 19451, 19452, 19453, 19454, 19455, 19456), class = &quot;Date&quot;)), class = c(&quot;spec_tbl_df&quot;,
  6. &quot;tbl_df&quot;, &quot;tbl&quot;, &quot;data.frame&quot;), row.names = c(NA, -11L), spec = structure(list(
  7. cols = list(no = structure(list(), class = c(&quot;collector_double&quot;,
  8. &quot;collector&quot;)), DATE = structure(list(format = &quot;&quot;), class = c(&quot;collector_date&quot;,
  9. &quot;collector&quot;)), Rates = structure(list(), class = c(&quot;collector_double&quot;,
  10. &quot;collector&quot;)), DATE_following = structure(list(format = &quot;&quot;), class = c(&quot;collector_date&quot;,
  11. &quot;collector&quot;))), default = structure(list(), class = c(&quot;collector_guess&quot;,
  12. &quot;collector&quot;)), skip = 1L), class = &quot;col_spec&quot;))
  13. dat2 &lt;- structure(list(no = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), DATE = structure(c(19443,
  14. 19444, 19445, 19446, 19447, 19448, 19449, 19450, 19451, 19452,
  15. 19453), class = &quot;Date&quot;), Rates = c(9, 4, 7, 1, 2, 7, 2, 3, 1,
  16. 5, 5), DATE_following = structure(c(19446, 19447, 19448, 19449,
  17. 19457, 19451, 19452, 19453, 19454, 19455, 19456), class = &quot;Date&quot;)), class = c(&quot;spec_tbl_df&quot;,
  18. &quot;tbl_df&quot;, &quot;tbl&quot;, &quot;data.frame&quot;), row.names = c(NA, -11L), spec = structure(list(
  19. cols = list(no = structure(list(), class = c(&quot;collector_double&quot;,
  20. &quot;collector&quot;)), DATE = structure(list(format = &quot;&quot;), class = c(&quot;collector_date&quot;,
  21. &quot;collector&quot;)), Rates = structure(list(), class = c(&quot;collector_double&quot;,
  22. &quot;collector&quot;)), DATE_following = structure(list(format = &quot;&quot;), class = c(&quot;collector_date&quot;,
  23. &quot;collector&quot;))), default = structure(list(), class = c(&quot;collector_guess&quot;,
  24. &quot;collector&quot;)), skip = 1L), class = &quot;col_spec&quot;))

答案2

得分: 2

这是您需要的内容:

  1. library(zoo)
  2. library(tidyverse)
  3. set.seed(1)
  4. dat <- seq.Date(from = as.Date(today()- days(10)), to = as.Date(today()), by = "day") %>%
  5. data.frame(DATE = .) %>%
  6. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),,replace=TRUE),
  7. DATE_following = DATE %m+% days(3),
  8. Results = rollapply(data = Rates, width = 4, FUN = sum, align = "left", fill = NA, partial = TRUE)) %>%
  9. mutate( Results = ifelse(DATE_following %in% DATE, Results, NA))
  10. dat

希望这对您有帮助。

英文:

Did you need something like this:

  1. library(zoo)
  2. library(tidyverse)
  3. set.seed(1)
  4. dat &lt;- seq.Date(from = as.Date(today()- days(10)), to = as.Date(today()), by = &quot;day&quot;) %&gt;%
  5. data.frame(DATE = .) %&gt;%
  6. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),,replace=TRUE),
  7. DATE_following = DATE %m+% days(3),
  8. Results = rollapply(data = Rates, width = 4, FUN = sum, align = &quot;left&quot;, fill = NA, partial = TRUE)) %&gt;%
  9. mutate( Results = ifelse(DATE_following %in% DATE, Results, NA))

dat

which results in:

  1. DATE Rates DATE_following Results
  2. 1 2023-03-27 3 2023-03-30 20
  3. 2 2023-03-28 3 2023-03-31 24
  4. 3 2023-03-29 8 2023-04-01 27
  5. 4 2023-03-30 6 2023-04-02 27
  6. 5 2023-03-31 7 2023-04-03 28
  7. 6 2023-04-01 6 2023-04-04 22
  8. 7 2023-04-02 8 2023-04-05 20
  9. 8 2023-04-03 7 2023-04-06 20
  10. 9 2023-04-04 1 2023-04-07 NA
  11. 10 2023-04-05 4 2023-04-08 NA
  12. 11 2023-04-06 8 2023-04-09 NA

Please check and let me know...

答案3

得分: 2

Sure, here are the translated code parts:

如果你想要一个滚动总和,你可以使用 filter

  1. rev(filter(rev(dat$Rates), rep(1,4), side=1))
  2. #rev(stats::filter(rev(dat$Rates), rep(1,4), side=1)) #如果使用了遮盖了 stats::filter 的 dplyr
  3. # [1] 21 14 17 12 14 13 11 14 NA NA NA

如果需要匹配日期:

  1. mapply(\(a,b) if(is.na(b)) NA else sum(dat$Rates[a:b]),
  2. seq_len(nrow(dat)), match(dat$DATE_following, dat$DATE))
  3. # [1] 21 14 17 12 14 13 11 14 NA NA NA

或者在日期没有排序且不需要匹配所有日期或无需匹配的情况下:

  1. mapply(\(a,b) sum(dat$Rates[dat$DATE >= a & dat$DATE <= b]),
  2. dat$DATE, dat$DATE_following)
  3. # [1] 21 14 17 12 14 13 11 14 11 10 5

感谢 @Martin Gal 提供的数据!

英文:

If you want a rolling sum you can use filter.

  1. rev(filter(rev(dat$Rates), rep(1,4), side=1))
  2. #rev(stats::filter(rev(dat$Rates), rep(1,4), side=1)) #In case using dplyr which is masking stats::filter
  3. # [1] 21 14 17 12 14 13 11 14 NA NA NA

In case the dates should be matched:

  1. mapply(\(a,b) if(is.na(b)) NA else sum(dat$Rates[a:b]),
  2. seq_len(nrow(dat)), match(dat$DATE_following, dat$DATE))
  3. # [1] 21 14 17 12 14 13 11 14 NA NA NA

Or in case it is not sorted and there is no need that all dates are present nor need to match:

  1. mapply(\(a,b) sum(dat$Rates[dat$DATE &gt;= a &amp; dat$DATE &lt;= b]),
  2. + dat$DATE, dat$DATE_following)
  3. # [1] 21 14 17 12 14 13 11 14 11 10 5

Thanks to @Martin Gal for providing the data!

答案4

得分: 1

以下是 data.table 中的两种方法:

  1. frollsum 方法
  1. library(data.table)
  2. setDT(dat)
  3. dat[,
  4. Results := frollsum(Rates, DATE_following - DATE + 1, adaptive = TRUE)
  5. ][,
  6. Results := Results[order(is.na(Results))]
  7. ][]
  1. non-equi join 方法
  1. library(data.table)
  2. setDT(dat)
  3. dat[
  4. dat[
  5. dat,
  6. on = .(DATE &lt;= DATE_following)
  7. ][
  8. DATE_following &gt;= DATE,
  9. .(Results = sum(Rates)),
  10. i.DATE
  11. ],
  12. Results := Results * (match(DATE_following, DATE) &gt; 0),
  13. on = .(DATE = i.DATE)
  14. ][]

输出

  1. DATE Rates DATE_following Results
  2. 1: 2023-03-27 9 2023-03-30 21
  3. 2: 2023-03-28 4 2023-03-31 14
  4. 3: 2023-03-29 7 2023-04-01 17
  5. 4: 2023-03-30 1 2023-04-02 12
  6. 5: 2023-03-31 2 2023-04-03 14
  7. 6: 2023-04-01 7 2023-04-04 13
  8. 7: 2023-04-02 2 2023-04-05 11
  9. 8: 2023-04-03 3 2023-04-06 14
  10. 9: 2023-04-04 1 2023-04-07 NA
  11. 10: 2023-04-05 5 2023-04-08 NA
  12. 11: 2023-04-06 5 2023-04-09 NA
英文:

Here are some data.table option

  1. frollsum approach
  1. library(data.table)
  2. setDT(dat)
  3. dat[
  4. ,
  5. Results := frollsum(Rates, DATE_following - DATE + 1, adaptive = TRUE)
  6. ][
  7. ,
  8. Results := Results[order(is.na(Results))]
  9. ][]
  1. non-equi join approach
  1. library(data.table)
  2. setDT(dat)
  3. dat[
  4. dat[
  5. dat,
  6. on = .(DATE &lt;= DATE_following)
  7. ][
  8. DATE_following &gt;= DATE,
  9. .(Results = sum(Rates)),
  10. i.DATE
  11. ],
  12. Results := Results * (match(DATE_following, DATE) &gt; 0),
  13. on = .(DATE = i.DATE)
  14. ][]

Output

  1. DATE Rates DATE_following Results
  2. 1: 2023-03-27 9 2023-03-30 21
  3. 2: 2023-03-28 4 2023-03-31 14
  4. 3: 2023-03-29 7 2023-04-01 17
  5. 4: 2023-03-30 1 2023-04-02 12
  6. 5: 2023-03-31 2 2023-04-03 14
  7. 6: 2023-04-01 7 2023-04-04 13
  8. 7: 2023-04-02 2 2023-04-05 11
  9. 8: 2023-04-03 3 2023-04-06 14
  10. 9: 2023-04-04 1 2023-04-07 NA
  11. 10: 2023-04-05 5 2023-04-08 NA
  12. 11: 2023-04-06 5 2023-04-09 NA

答案5

得分: 1

以下是代码的翻译部分:

  1. # remotes::install_github(&quot;NicChr/timeplyr&quot;)
  2. library(timeplyr)
  3. library(dplyr)
  4. library(lubridate)
  5. set.seed(1)
  6. dat &lt;- seq.Date(from = as.Date(Sys.Date()- days(10)),
  7. to = as.Date(Sys.Date()),
  8. by = &quot;day&quot;) %&gt;%
  9. data.frame(DATE = .) %&gt;%
  10. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),,replace=TRUE),
  11. DATE_following =DATE %m+% days(3))
  12. # Vectorised seq function
  13. x1 &lt;- time_seq_v(dat$DATE, dat$DATE_following, by = &quot;days&quot;)
  14. # Label these based on the relevant rows
  15. x2 &lt;- rep(seq_len(nrow(dat)), time_seq_len(dat$DATE, dat$DATE_following, by = &quot;days&quot;))
  16. # Add these sequences to the data
  17. dat &lt;- dat %&gt;%
  18. mutate(dates = split(x1, x2))
  19. # Sum
  20. my_sum &lt;- numeric(nrow(dat))
  21. for (i in seq_len(nrow(dat))){
  22. my_sum[[i]] &lt;- sum(dat$Rates[dat$DATE %in% dat$dates[[i]]])
  23. }
  24. dat$Result &lt;- my_sum
  25. dat

希望这对您有所帮助。

英文:

A rolling sum would indeed be more efficient, but this could be a potential solution if your start and end points are dynamic.

  1. # remotes::install_github(&quot;NicChr/timeplyr&quot;)
  2. library(timeplyr)
  3. library(dplyr)
  4. library(lubridate)
  5. set.seed(1)
  6. dat &lt;- seq.Date(from = as.Date(Sys.Date()- days(10)),
  7. to = as.Date(Sys.Date()),
  8. by = &quot;day&quot;) %&gt;%
  9. data.frame(DATE = .) %&gt;%
  10. mutate(Rates = sample(seq(from=1,to=10,by=1), size = length(DATE),,replace=TRUE),
  11. DATE_following =DATE %m+% days(3))
  12. # Vectorised seq function
  13. x1 &lt;- time_seq_v(dat$DATE, dat$DATE_following, by = &quot;days&quot;)
  14. # Label these based on the relevant rows
  15. x2 &lt;- rep(seq_len(nrow(dat)), time_seq_len(dat$DATE, dat$DATE_following, by = &quot;days&quot;))
  16. # Add these sequences to the data
  17. dat &lt;- dat %&gt;%
  18. as_tibble() %&gt;%
  19. mutate(dates = split(x1, x2))
  20. # Sum
  21. my_sum &lt;- numeric(nrow(dat))
  22. for (i in seq_len(nrow(dat))){
  23. my_sum[[i]] &lt;- sum(dat$Rates[dat$DATE %in% dat$dates[[i]]])
  24. }
  25. dat$Result &lt;- my_sum
  26. dat
  27. #&gt; # A tibble: 11 x 5
  28. #&gt; DATE Rates DATE_following dates Result
  29. #&gt; &lt;date&gt; &lt;dbl&gt; &lt;date&gt; &lt;named list&gt; &lt;dbl&gt;
  30. #&gt; 1 2023-03-27 9 2023-03-30 &lt;date [4]&gt; 21
  31. #&gt; 2 2023-03-28 4 2023-03-31 &lt;date [4]&gt; 14
  32. #&gt; 3 2023-03-29 7 2023-04-01 &lt;date [4]&gt; 17
  33. #&gt; 4 2023-03-30 1 2023-04-02 &lt;date [4]&gt; 12
  34. #&gt; 5 2023-03-31 2 2023-04-03 &lt;date [4]&gt; 14
  35. #&gt; 6 2023-04-01 7 2023-04-04 &lt;date [4]&gt; 13
  36. #&gt; 7 2023-04-02 2 2023-04-05 &lt;date [4]&gt; 11
  37. #&gt; 8 2023-04-03 3 2023-04-06 &lt;date [4]&gt; 14
  38. #&gt; 9 2023-04-04 1 2023-04-07 &lt;date [4]&gt; 11
  39. #&gt; 10 2023-04-05 5 2023-04-08 &lt;date [4]&gt; 10
  40. #&gt; 11 2023-04-06 5 2023-04-09 &lt;date [4]&gt; 5

<sup>Created on 2023-04-06 with reprex v2.0.2</sup>

huangapple
  • 本文由 发表于 2023年4月6日 19:15:49
  • 转载请务必保留本文链接:https://go.coder-hub.com/75948891.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定