计算Shapefile上点之间的距离

huangapple go评论54阅读模式
英文:

Calculating Distances Between Points on a Shapefile

问题

我正在使用R编程语言。

我对如何计算两组坐标之间的驾驶距离(例如,基于道路网络)感兴趣。

例如:

  • CN塔:290 Bremner Blvd,Toronto,ON M5V 3L9(-79.61203,43.68312)
  • 多伦多机场:6301 Silver Dart Dr,Mississauga,ON L5P 1B2(-79.61203,43.64256)

为了解决这个问题,我尝试下载加拿大道路网络的形状文件并将其子集化为安大略省:

library(sf)
library(rgdal)
library(sfnetworks)
# 设置形状文件的URL
url <- "https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/files-fichiers/lrnf000r22a_e.zip"

# 创建一个临时文件夹来下载和提取形状文件
temp_dir <- tempdir()
temp_file <- file.path(temp_dir, "lrnf000r22a_e.zip")

# 下载形状文件到临时文件夹
download.file(url, temp_file)

# 从下载的zip文件中提取形状文件
unzip(temp_file, exdir = temp_dir)

# 使用rgdal包读取形状文件
a = st_read(file.path(temp_dir, "lrnf000r22a_e.shp"), query="select * from lrnf000r22a_e where PRUID_R ='35'")

导入R后,文件看起来像这样:

Simple feature collection with 570706 features and 21 fields
Geometry type: LINESTRING
Dimension: XY
Bounding box: xmin: 5963148 ymin: 665490.8 xmax: 7581671 ymax: 2212179
Projected CRS: NAD83 / Statistics Canada Lambert
First 10 features:
   OBJECTID NGD_UID NAME TYPE  DIR AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L                           CSDNAME_L CSDTYPE_L CSDUID_R                           CSDNAME_R CSDTYPE_R PRUID_L PRNAME_L PRUID_R PRNAME_R RANK
1         4 3434819     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>    <NA>  3526003                           Fort Erie         T  3526003                           Fort Erie         T      35  Ontario      35  Ontario    5
2         5 1358252    South LINE <NA>    <NA>    <NA>    <NA>    <NA>  3551027                Gordon/Barrie Island        MU  3551027                Gordon/Barrie Island        MU      35  Ontario      35  Ontario    5
3         8 1778927     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>    <NA>  3512054                           Wollaston        TP  3512054                           Wollaston        TP      35  Ontario      35  Ontario    5
4        11  731932   Albion   RD <NA>    <NA>    <NA>    2010    2010  3520005                             Toronto         C  3520005                             Toronto         C      35  Ontario      35  Ontario    3
5        18 3123617  County 41   RD <NA>     640     708     635     709  3511015                     Greater Napanee         T  3511015                     Greater Napanee         T      35  Ontario      35  Ontario    3
6        20 4814160     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>    <NA>  3553005     Greater Sudbury / Grand Sudbury        CV  3553005     Greater Sudbury / Grand Sudbury        CV      35  Ontario      35  Ontario    5
7        21 1817031     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>    <NA>  3537028                         Amherstburg         T  3537028                         Amherstburg         T      35  Ontario      35  Ontario    5
8        24 4825761     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>    <NA>  3554094 Timiskaming, Unorganized, West Part        NO  3554094 Timiskaming, Unorganized, West Part        NO      35  Ontario      35  Ontario    5
9        25  544891   Dunelm   DR <NA>       1       9       2      10  3526053                      St. Catharines        CY  3526053                      St. Catharines        CY      35  Ontario      35  Ontario    5
10       28 1835384 Seven Oaks   DR <NA>     730     974     731     975  3515005             Otonabee-South Monaghan        TP  3515005             Otonabee-South Monaghan        TP      35  Ontario      35  Ontario    5
   CLASS                 _ogr_geometry_
1     23 LINESTRING (7269806 859183,...
2     23 LINESTRING (6921247 1133452...
3     23 LINESTRING (7320857 1089403..

然后,通过参考不同的参考资料(例如 https://cran.r-project.org/web/packages/sfnetworks/vignettes/sfn01_structure.html,https://stackoverflow.com/questions/66513615/creating-a-route-from-a-list-of-points-and-overlaying-the-route-list-of-points) - 我尝试计算这两个点之间的距离:

# 将形状文件转换为sfnetwork对象
net <- as_sfnetwork(a)

# 定义起点和终点
q1 <- st_point(c(-79.61203, 43.68312))
q2 <- st_point(c(-79.38709, 43.64256))

# 将点的CRS设置为与形状文件的CRS匹配
q1 <- st_sfc(q1, crs = st_crs(a))
q2 <- st_sfc(q2, crs = st_crs(a))

# 找到两点之间的最短路径
path <- st_network_paths(net, q1, q2)

#

<details>
<summary>英文:</summary>

I am working with the R programming language. 

**I am interested in learning about how to calculate the driving distance (e.g. based on road networks) between two sets of coordinates.** 

For example:

- CN Tower: 290 Bremner Blvd, Toronto, ON M5V 3L9 (-79.61203, 43.68312)
- Toronto Airport: 6301 Silver Dart Dr, Mississauga, ON L5P 1B2 (-79.61203, 43.64256)

To solve this problem, I tried to download the shapefile for the Canadian Road Network and subset it for the Province of Ontario:

    library(sf)
    library(rgdal)
    library(sfnetworks)
    # Set the URL for the shapefile
    url &lt;- &quot;https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/files-fichiers/lrnf000r22a_e.zip&quot;
    
    # Create a temporary folder to download and extract the shapefile
    temp_dir &lt;- tempdir()
    temp_file &lt;- file.path(temp_dir, &quot;lrnf000r22a_e.zip&quot;)
    
    # Download the shapefile to the temporary folder
    download.file(url, temp_file)
    
    # Extract the shapefile from the downloaded zip file
    unzip(temp_file, exdir = temp_dir)
    
    # Read the shapefile using the rgdal package
    # source: https://gis.stackexchange.com/questions/456748/strategies-for-working-with-large-shapefiles/456798#456798
    a = st_read(file.path(temp_dir, &quot;lrnf000r22a_e.shp&quot;), query=&quot;select * from lrnf000r22a_e where PRUID_R =&#39;35&#39;&quot;)

When imported into R, the file looks something like this:

    Simple feature collection with 570706 features and 21 fields
    Geometry type: LINESTRING
    Dimension:     XY
    Bounding box:  xmin: 5963148 ymin: 665490.8 xmax: 7581671 ymax: 2212179
    Projected CRS: NAD83 / Statistics Canada Lambert
    First 10 features:
       OBJECTID NGD_UID       NAME TYPE  DIR AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L                           CSDNAME_L CSDTYPE_L CSDUID_R                           CSDNAME_R CSDTYPE_R PRUID_L PRNAME_L PRUID_R PRNAME_R RANK
    1         4 3434819       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3526003                           Fort Erie         T  3526003                           Fort Erie         T      35  Ontario      35  Ontario    5
    2         5 1358252      South LINE &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3551027                Gordon/Barrie Island        MU  3551027                Gordon/Barrie Island        MU      35  Ontario      35  Ontario    5
    3         8 1778927       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3512054                           Wollaston        TP  3512054                           Wollaston        TP      35  Ontario      35  Ontario    5
    4        11  731932     Albion   RD &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    2010    2010  3520005                             Toronto         C  3520005                             Toronto         C      35  Ontario      35  Ontario    3
    5        18 3123617  County 41   RD &lt;NA&gt;     640     708     635     709  3511015                     Greater Napanee         T  3511015                     Greater Napanee         T      35  Ontario      35  Ontario    3
    6        20 4814160       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3553005     Greater Sudbury / Grand Sudbury        CV  3553005     Greater Sudbury / Grand Sudbury        CV      35  Ontario      35  Ontario    5
    7        21 1817031       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3537028                         Amherstburg         T  3537028                         Amherstburg         T      35  Ontario      35  Ontario    5
    8        24 4825761       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3554094 Timiskaming, Unorganized, West Part        NO  3554094 Timiskaming, Unorganized, West Part        NO      35  Ontario      35  Ontario    5
    9        25  544891     Dunelm   DR &lt;NA&gt;       1       9       2      10  3526053                      St. Catharines        CY  3526053                      St. Catharines        CY      35  Ontario      35  Ontario    5
    10       28 1835384 Seven Oaks   DR &lt;NA&gt;     730     974     731     975  3515005             Otonabee-South Monaghan        TP  3515005             Otonabee-South Monaghan        TP      35  Ontario      35  Ontario    5
       CLASS                 _ogr_geometry_
    1     23 LINESTRING (7269806 859183,...
    2     23 LINESTRING (6921247 1133452...
    3     23 LINESTRING (7320857 1089403..

Then, by consulting different references (e.g. https://cran.r-project.org/web/packages/sfnetworks/vignettes/sfn01_structure.html, https://stackoverflow.com/questions/66513615/creating-a-route-from-a-list-of-points-and-overlaying-the-route-list-of-points) - I tried to calculate the distance between these two points:

    # convert the shapefile to an sfnetwork object
    net &lt;- as_sfnetwork(a)
    
    # define your start and end points
    q1 &lt;- st_point(c(-79.61203, 43.68312))
    q2 &lt;- st_point(c(-79.38709, 43.64256))
    
    # set the CRS of the points to match the CRS of your shapefile
    q1 &lt;- st_sfc(q1, crs = st_crs(a))
    q2 &lt;- st_sfc(q2, crs = st_crs(a))
    
    # find the shortest path between the two points
    path &lt;- st_network_paths(net, q1, q2)
    
    # calculate the distance of the path in meters
    distance &lt;- sum(st_length(path))

But I get the following error:  `Error in UseMethod(&quot;st_geometry&quot;) : no applicable method for &#39;st_geometry&#39; applied to an object of class &quot;c(&#39;tbl_df&#39;, &#39;tbl&#39;, &#39;data.frame&#39;)&quot;` 


Can someone please show me how to fix this problem?

Thanks!

</details>


# 答案1
**得分**: 1

你很接近得到期望的结果。错误发生是因为`st_network_paths`函数期望一个`sfnetwork`对象,但实际上它收到了一个`data.frame`。问题似乎出在将你的 "a" 对象转换为`sfnetwork`对象时使用`as_sfnetwork()`函数。

请尝试以下代码以修复这个问题:

```R
library(sf)
library(rgdal)
library(sfnetworks)
library(units)

# 你之前的代码一直保持不变,直到这一点

# 将 shapefile 转换为 sfnetwork 对象
net <- as_sfnetwork(a, directed = FALSE)  # 如果你的道路网络是无向的,设置 directed = FALSE

# 将点投影到与 shapefile 的 CRS 匹配
q1 <- st_transform(q1, st_crs(a))
q2 <- st_transform(q2, st_crs(a))

# 找到每个点在网络上的最近节点
from_node <- st_nearest_feature(q1, net)
to_node <- st_nearest_feature(q2, net)

# 找到两点之间的最短路径
path <- st_network_paths(net, from_node, to_node)

# 计算路径的距离(以米为单位)
distance <- sum(path$length) %>% set_units("meters")

这应该修复错误,并为你提供道路网络上两个点之间的正确驾驶距离。

编辑

这是修订后的代码:


library(sf)
library(rgdal)
library(sfnetworks)
library(units)

# 你之前的代码一直保持不变,直到你将 shapefile 读入 "a" 中

# 将数据转换为 WGS 84
a <- st_transform(a, 4326)

# 将 shapefile 转换为 sfnetwork 对象
net <- as_sfnetwork(a, directed = FALSE)

# 创建具有与 shapefile 相同 CRS 的点
q1 <- st_point(c(-79.61203, 43.68312))
q2 <- st_point(c(-79.38709, 43.64256))
q1 <- st_sfc(q1, crs = 4326)
q2 <- st_sfc(q2, crs = 4326)

# 找到每个点在网络上的最近节点
from_node <- st_nearest_feature(q1, net)
to_node <- st_nearest_feature(q2, net)

# 找到两点之间的最短路径
path <- st_network_paths(net, from_node, to_node)

# 计算路径的距离(以米为单位)
distance <- sum(path$paths[[1]]$length) %>% set_units("meters")

这应该为你提供两个点之间的正确距离。请注意,实际值将取决于输入道路网络数据的准确性和完整性。

英文:

You are very close to getting the desired result. The error is happening because st_network_paths function is expecting an sfnetwork object, but it is actually receiving a data.frame. The issue seems to be with the conversion of your "a" object to an sfnetwork object using as_sfnetwork() function.

Please try the following code to fix the issue:

library(sf)
library(rgdal)
library(sfnetworks)
library(units)

# Your previous code remains the same until this point

# convert the shapefile to an sfnetwork object
net &lt;- as_sfnetwork(a, directed = FALSE)  # Set directed = FALSE if your road network is undirected

# Reproject the points to match the CRS of your shapefile
q1 &lt;- st_transform(q1, st_crs(a))
q2 &lt;- st_transform(q2, st_crs(a))

# Find the nearest node on the network for each point
from_node &lt;- st_nearest_feature(q1, net)
to_node &lt;- st_nearest_feature(q2, net)

# Find the shortest path between the two points
path &lt;- st_network_paths(net, from_node, to_node)

# Calculate the distance of the path in meters
distance &lt;- sum(path$length) %&gt;% set_units(&quot;meters&quot;)

This should fix the error and give you the correct driving distance between the two points on the road network.

EDIT

Here's the revised code:


library(sf)
library(rgdal)
library(sfnetworks)
library(units)

# Your previous code remains the same until you read the shapefile into &quot;a&quot;

# Transform the data to WGS 84
a &lt;- st_transform(a, 4326)

# Convert the shapefile to an sfnetwork object
net &lt;- as_sfnetwork(a, directed = FALSE)

# Create the points with the same CRS as the shapefile
q1 &lt;- st_point(c(-79.61203, 43.68312))
q2 &lt;- st_point(c(-79.38709, 43.64256))
q1 &lt;- st_sfc(q1, crs = 4326)
q2 &lt;- st_sfc(q2, crs = 4326)

# Find the nearest node on the network for each point
from_node &lt;- st_nearest_feature(q1, net)
to_node &lt;- st_nearest_feature(q2, net)

# Find the shortest path between the two points
path &lt;- st_network_paths(net, from_node, to_node)

# Calculate the distance of the path in meters
distance &lt;- sum(path$paths[[1]]$length) %&gt;% set_units(&quot;meters&quot;)

This should give you the correct distance between the two points. Note that the actual value will depend on the accuracy and completeness of the input road network data.

huangapple
  • 本文由 发表于 2023年4月4日 03:39:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/75923204.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定