librosa中的y轴频谱图未正确对齐。

huangapple go评论66阅读模式
英文:

librosa y-axis spectrogram does not align properly

问题

I can provide translations for the non-code parts of your text:

"如何在Librosa或Matplotlib中对谱图可视化的轴进行对齐?"

"考虑这个示例,来自Librosa的文档:"

"如您所见,rolloff与谱图对齐。"

"我无法使用我的音频复制这个图。"

"y轴从未对齐。"

"尝试:"

"如果您需要复制,可以尝试下载音频wav文件:"

"我得到了这个:"

"如果我在specshow中设置速率,我得到了这个:"

"我希望带宽遵循与它们构建的谱图相同的比例..."

If you have any specific questions or need further assistance, please let me know.

英文:

How to align axis of spectrogram visualisations in Librosa or Matplotlib ?

Consider this example, from Librosa's documentation:
librosa中的y轴频谱图未正确对齐。

as you can see, the rolloff are aligned with the spectrogram.
I can't replicate the figure with my own audio.

The y-axis is never aligned.

Try:

sr = 250000
n_fft = 2048
hop_length=256
win_length = 1024
fmin = 220


S, phase = librosa.magphase(librosa.stft(filtered_audio))

sftf_spec = librosa.stft(filtered_audio, n_fft=n_fft, hop_length=hop_length)

S = np.abs(sftf_spec)

rolloff = librosa.feature.spectral_rolloff(S=S, 
                                           sr=sr, 
                                           n_fft=n_fft, 
                                           hop_length=hop_length, 
                                           win_length = win_length 
                                          )

amplitude_spec = librosa.amplitude_to_db(S, 
                                        
                                     
                                        ref=np.max)

rolloff_min = librosa.feature.spectral_rolloff(S=S, sr=sr, roll_percent=0.15)

fig, ax = plt.subplots()

librosa.display.specshow(amplitude_spec,

                         y_axis='log', x_axis='time', ax=ax)

ax.plot(librosa.times_like(rolloff), rolloff[0], label='Roll-off frequency (0.85)')

ax.plot(librosa.times_like(rolloff), rolloff_min[0], color='w',

        label='Roll-off frequency (0.15)')

ax.legend(loc='lower right')

ax.set(title='log Power spectrogram')

If you need to replicate, you can try download the audio wav :

https://drive.google.com/file/d/1UCUWAaczzejTN9m_y-usjPbG8__1mWI1/view?usp=sharing
filtered_audio  = np.array([[  #copy ]])

I got this:

librosa中的y轴频谱图未正确对齐。

and if I set the rate in specshow, I got this:

librosa.display.specshow(amplitude_spec,
                         sr=sr,

                         y_axis='log', x_axis='time', ax=ax)

librosa中的y轴频谱图未正确对齐。

I want to have the bandwidth following the same scale of the spectrogram they were build from...

答案1

得分: 1

One has to be diligent in passing all the relevant parameters. In your code, both the call to specshow, times_like, and spectral_rolloff were missing key arguments like sr, hop_length et.c. Without these, both the X and Y axis will typically be off.

When ensuring this, the results look to be correct. See complete code below.

librosa中的y轴频谱图未正确对齐。

import librosa
import numpy as np
import pandas

from matplotlib import pyplot as plt
import librosa.display

def plot_spectral(audio, sr, hop_length=256, win_length=1024, n_fft=2048):
    # shared parameters
    spec_params = dict(n_fft=n_fft, hop_length=hop_length, win_length=win_length)

    # compute
    sftf_spec = librosa.stft(audio, **spec_params)
    S = np.abs(sftf_spec)
    amplitude_spec = librosa.amplitude_to_db(S, ref=np.max)

    up = librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.85)

    rolloff = pandas.DataFrame({
        'upper': librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.85)[0, :],
        'lower': librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.15)[0, :],
    })
    rolloff['time'] = librosa.times_like(rolloff['lower'], sr=sr, hop_length=hop_length)

    fig, ax = plt.subplots()

    librosa.display.specshow(amplitude_spec, sr=sr, **spec_params, y_axis='log', x_axis='time', ax=ax)

    ax.plot(rolloff['time'], rolloff['upper'], color='blue', label='Roll-off frequency (0.85)')

    ax plot(rolloff['time'], rolloff['lower'], color='white', label='Roll-off frequency (0.15)')

    ax.legend(loc='lower right')

    ax.set(title='log Power spectrogram')

    fig.savefig('spectral-rolloffs.png')

def load_data():
    p = 'test_wav_segment.wav'
    audio, sr = librosa.load(p, sr=None)
    return audio, sr

audio, sr = load_data()

plot_spectral(audio, sr=sr)

The use of Pandas is not critical. However, it keeps the related data together and ensures that the times array is of equal length to the rolloffs which they are for.

英文:

One has to be diligent in passing all the relevant parameters. In your code, both the call to specshow, times_like, and spectral_rolloff were missing key arguments like sr, hop_length et.c. Without these, both the X and Y axis will typically be off.

When ensuring this, the results look to be correct. See complete code below.

librosa中的y轴频谱图未正确对齐。

import librosa
import numpy as np
import pandas

from matplotlib import pyplot as plt
import librosa.display



def plot_spectral(audio, sr, hop_length=256, win_length=1024, n_fft=2048):

    # shared parameters
    spec_params = dict(n_fft=n_fft, hop_length=hop_length, win_length=win_length)

    # compute
    sftf_spec = librosa.stft(audio, **spec_params)
    S = np.abs(sftf_spec)
    amplitude_spec = librosa.amplitude_to_db(S, ref=np.max)

    up = librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.85)
    
    rolloff = pandas.DataFrame({
        'upper': librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.85)[0, :],
        'lower': librosa.feature.spectral_rolloff(S=S, sr=sr, **spec_params, roll_percent=0.15)[0, :],
    })
    rolloff['time'] = librosa.times_like(rolloff['lower'], sr=sr, hop_length=hop_length)

    fig, ax = plt.subplots()

    librosa.display.specshow(amplitude_spec, sr=sr, **spec_params,
                             y_axis='log', x_axis='time', ax=ax, )

    ax.plot(rolloff['time'], rolloff['upper'], color='blue', label='Roll-off frequency (0.85)')

    ax.plot(rolloff['time'], rolloff['lower'], color='white', label='Roll-off frequency (0.15)')

    ax.legend(loc='lower right')

    ax.set(title='log Power spectrogram')

    fig.savefig('spectral-rolloffs.png')


def load_data():
    p = 'test_wav_segment.wav'
    audio, sr = librosa.load(p, sr=None)
    return audio, sr

audio, sr = load_data()


plot_spectral(audio, sr=sr)

The use of Pandas is not critical. However it keeps the related data together, and ensures that the times array is equal length to the rolloffs which they are fo.

huangapple
  • 本文由 发表于 2023年3月31日 23:41:03
  • 转载请务必保留本文链接:https://go.coder-hub.com/75900386.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定