如何从 pandas 数据框中删除具有一些复杂条件的重复项?

huangapple go评论74阅读模式
英文:

How to drop duplicate from a pandas dataframe with some complex conditions?

问题

我正在尝试根据一些条件删除重复项。我的数据框如下所示:

idx  a    b    c   d   e  f
1    1   ss1   0   25  A  B
2    3   ss7   0   25  A  B
3    5   ss5   0   12  C  D
4    11  im3   0   12  C  D
5    5   ss8   0   50  C  K
6    9   im8   0   5   F  G
7    8   ix6   0   5   F  G

如果列 def 的值在数据框中的其他记录中匹配,则认为行是重复的,subset=['d', 'e', 'f']。例如,行1和行2是重复的,行3和行4是重复的,行6和行7是重复的。选择要删除的行基于列 b

  1. 如果列 b 中的值都以 ss 开头(例如行1和行2),则可以删除任何一个。

  2. 如果重复项中有一个以 ss 开头,而另一个以不同格式开头(例如行3和行4),则应保留以 ss 开头的那一个。

  3. 如果列 b 中的重复项都不以 ss 开头(例如行6和行7),则可以选择任何一个。

因此,预期输出应该类似于以下内容:

idx  a    b    c   d   e  f
2    3   ss7   0   25  A  B
3    5   ss5   0   12  C  D
5    5   ss8   0   50  C  K
7    8   ix6   0   5   F  G
英文:

I am trying to drop duplicates, but based on some conditions. My dataframe looks like this:

idx  a    b    c   d   e  f
1    1   ss1   0   25  A  B
2    3   ss7   0   25  A  B
3    5   ss5   0   12  C  D
4    11  im3   0   12  C  D
5    5   ss8   0   50  C  K
6    9   im8   0   5   F  G
7    8   ix6   0   5   F  G

Rows are considered duplicates if the values of columns d, e and f together match other records in the dataframe subset=['d', 'e', 'f']. For example, rows 1 and 2 are duplicates, rows 3 and 4 are duplicates, and rows 6 and 7 are duplicates. The selection of which row to drop is based on column b.

  1. If the value in column b begins with ss for both duplicates (rows 1 and 2), then anyone can be dropped

  2. If one of the duplicates begins with ss and the other begins with a different format (rows 3 and 4), then the one that begins with ss should be kept.

  3. If both duplicates in column b begin with anything other than ss (rows 6 and 7), then anyone can be selected.

Therefore, the expected output should be something like this:

idx  a    b    c   d   e  f
2    3   ss7   0   25  A  B
3    5   ss5   0   12  C  D
5    5   ss8   0   50  C  K
7    8   ix6   0   5   F  G

答案1

得分: 3

b 键首先排序(所有以 'ss' 开头的项目移到末尾),然后从 [‘d’, ‘e’, ‘f’] 中去除重复项(保留最后一个):

out = (df.sort_values('b', key=lambda x: x.str.startswith('ss'))
         .drop_duplicates(['d', 'e', 'f'], keep='last').sort_index())

或者

out = (df.sort_values('b', key=lambda x: x.str.startswith('ss'))
         .groupby(['d', 'e', 'f'], as_index=False).nth(-1).sort_index())

输出:

>>> out
   idx  a    b  c   d  e  f
1    2  3  ss7  0  25  A  B
2    3  5  ss5  0  12  C  D
4    5  5  ss8  0  50  C  K
6    7  8  ix6  0   5  F  G
英文:

Sort by b key first (everything starts by 'ss' is moved to the end) then drop duplicates from ['d', 'e', 'f'] (keep the last):

out = (df.sort_values('b', key=lambda x: x.str.startswith('ss'))
         .drop_duplicates(['d', 'e', 'f'], keep='last').sort_index())

# OR

out = (df.sort_values('b', key=lambda x: x.str.startswith('ss'))
         .groupby(['d', 'e', 'f'], as_index=False).nth(-1).sort_index())

Output:

>>> out
   idx  a    b  c   d  e  f
1    2  3  ss7  0  25  A  B
2    3  5  ss5  0  12  C  D
4    5  5  ss8  0  50  C  K
6    7  8  ix6  0   5  F  G

huangapple
  • 本文由 发表于 2023年3月31日 17:19:44
  • 转载请务必保留本文链接:https://go.coder-hub.com/75896790.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定