检查我的数据框列中的元素是否具有相同的类型

huangapple go评论62阅读模式
英文:

Checking if elements in my dataframe columns have the same type

问题

我使用Python和DataFrame df一起工作。在尝试检查所有列的每行是否具有相同类型时,我编写了以下代码:

a=0
first_object = df.loc[df.index[0]]
for column in df:
    for i in range(0,len(df)):
        if type(df[column][i]) != type(first_object[column]):
            a+=1
print(a)

我得到的错误是:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   3360             try:
-> 3361                 return self._engine.get_loc(casted_key)
   3362             except KeyError as err:

...

KeyError: 155

我感到困惑,因为type(df[column][i])type(first_object[column])单独使用时都能正常工作。我尝试了匹配类型和不匹配类型,预期地返回了TrueFalse。所以我不明白为什么我的代码不起作用。

英文:

I'm using Python and work with a dataframe df. When trying to check if for all columns, each row has the same type I wrote the following lines :

a=0
first_object = df.loc[df.index[0]]
for column in df: 
    for i in range(0,len(df)):
        if type(df[column][i]) != type(first_object[column]):
            a+=1
print(a)

The error I got is :


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   3360             try:
-> 3361                 return self._engine.get_loc(casted_key)
   3362             except KeyError as err:

~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.Int64HashTable.get_item()

KeyError: 155

The above exception was the direct cause of the following exception:

KeyError                                  Traceback (most recent call last)
/var/folders/xb/74q_24bx0rxgqc6gtd6ksn7c0000gn/T/ipykernel_25626/3160699232.py in <module>
      3 for column in df:
      4     for i in range(0,len(df)):
----> 5         if type(df[column][i]) != type(first_object[column]):
      6             a+=1

~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/core/series.py in __getitem__(self, key)
    940 
    941         elif key_is_scalar:
--> 942             return self._get_value(key)
    943 
    944         if is_hashable(key):

~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/core/series.py in _get_value(self, label, takeable)
   1049 
   1050         # Similar to Index.get_value, but we do not fall back to positional
-> 1051         loc = self.index.get_loc(label)
   1052         return self.index._get_values_for_loc(self, loc, label)
   1053 

~/opt/anaconda3/envs/adsml/lib/python3.9/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
   3361                 return self._engine.get_loc(casted_key)
   3362             except KeyError as err:
-> 3363                 raise KeyError(key) from err
   3364 
   3365         if is_scalar(key) and isna(key) and not self.hasnans:

KeyError: 155

I am confused as both type(df[column][i]) and type(first_object[column]) works separately. I tried it with matching types and non-matching types, and True and False were returned as expected. So I don't understand why my code is not working.

答案1

得分: 1

如果我理解正确,您想统计具有唯一对象类型的列数。

您可以使用:

df.applymap(type).nunique().eq(1).sum()

修正您的代码:

a = 0
first_object = df.iloc[0]
for column in df:
    for i in df.index:
        if type(df.loc[i, column]) != type(first_object[column]):
            a += 1

矢量等效(计算与第一行不同的值)将是:

df2 = df.applymap(type)
out = df2.ne(df2.iloc[0]).sum().sum()
英文:

If I understand correctly, you want to count the number of columns that have a unique type of object.

You can use:

df.applymap(type).nunique().eq(1).sum()

fixing your code:

I wouldn't use a loop in real-life!

a=0
first_object = df.iloc[0]
for column in df: 
    for i in df.index:
        if type(df.loc[i, column]) != type(first_object[column]):
            a+=1

The vectorial equivalent (counting the values that differ from your first row) would be:

df2 = df.applymap(type)
out = df2.ne(df2.iloc[0]).sum().sum()

huangapple
  • 本文由 发表于 2023年3月20日 22:49:50
  • 转载请务必保留本文链接:https://go.coder-hub.com/75791793.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定