如何根据多列中的特定值将行值转换为列?

huangapple go评论95阅读模式
英文:

How to transform row values into column based on specific values from multiple columns?

问题

这是一个更大数据的示例。

我有一个类似这样的数据框:

  1. df = pd.DataFrame({"Year":[2023, 2023, 2023, 2024, 2024, 2024],
  2. "Value":[0, 2, 3, 1, 5, 2],
  3. "Field":["A", "A", "B", "A", "B", "B"],
  4. "ID":["X", "X", "X", "X", "Z", "Y"],
  5. "Type":["class1","class2","class1","class1","class1","class2"]})

我想要基于df["Type"]的值创建新的列,并根据列Field和ID中的相同数据获取列df["Value"]中的值。因此,我的输出应该类似于这样:

  1. Year Field ID class1 class2
  2. 0 2023 A X 0.0 2.0
  3. 1 2023 B X 3.0 NaN
  4. 2 2024 A X 1.0 NaN
  5. 3 2024 B Z 5.0 NaN
  6. 4 2024 B Y NaN 2.0

有人能帮助我吗?

英文:

This is an example of bigger data.

I have a dataframe like this:

  1. df = pd.DataFrame({"Year":[2023, 2023, 2023, 2024, 2024, 2024],
  2. "Value":[0, 2, 3, 1, 5, 2],
  3. "Field":["A", "A", "B", "A", "B", "B"],
  4. "ID":["X", "X", "X", "X", "Z", "Y"],
  5. "Type":["class1","class2","class1","class1","class1","class2"]})
  6. df
  7. Out[8]:
  8. Year Value Field ID Type
  9. 0 2023 0 A X class1
  10. 1 2023 2 A X class2
  11. 2 2023 3 B X class1
  12. 3 2024 1 A X class1
  13. 4 2024 5 B Z class1
  14. 5 2024 2 B Y class2

I would like to create new columns based on df["Type"] values and take the values from the column df["Value"] based on the same data in columns Field and ID. So my output should be something like this:

  1. Year Field ID class1 class2
  2. 0 2023 A X 0.0 2.0
  3. 1 2023 B X 3.0 NaN
  4. 2 2024 A X 1.0 NaN
  5. 3 2024 B Z 5.0 NaN
  6. 4 2024 B Y NaN 2.0

Anyone could help me?

答案1

得分: 1

  1. 使用 [`df.pivot`][1] 函数
  2. ```python
  3. res = df.pivot(columns='Type', values='Value', index=['Year', 'Field', 'ID']).reset_index()

  1. Type Year Field ID class1 class2
  2. 0 2023 A X 0.0 2.0
  3. 1 2023 B X 3.0 NaN
  4. 2 2024 A X 1.0 NaN
  5. 3 2024 B Y NaN 2.0
  6. 4 2024 B Z 5.0 NaN
  1. <details>
  2. <summary>英文:</summary>
  3. Apply [`df.pivot`][1]:
  4. res = df.pivot(columns=&#39;Type&#39;, values=&#39;Value&#39;, index=[&#39;Year&#39;, &#39;Field&#39;, &#39;ID&#39;]).reset_index()
  5. ----------
  6. Type Year Field ID class1 class2
  7. 0 2023 A X 0.0 2.0
  8. 1 2023 B X 3.0 NaN
  9. 2 2024 A X 1.0 NaN
  10. 3 2024 B Y NaN 2.0
  11. 4 2024 B Z 5.0 NaN
  12. [1]: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot.html
  13. </details>

huangapple
  • 本文由 发表于 2023年3月10日 01:38:13
  • 转载请务必保留本文链接:https://go.coder-hub.com/75688185.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定