使用pandas读取基于多索引标题的Excel文件

huangapple go评论149阅读模式
英文:

reading multi-index header based excel file using pandas

问题

以下是您提供的代码的翻译部分:

import pandas as pd

# 加载Excel文件
df = pd.read_excel('test_3.xlsx', sheet_name='WEEK - 2023', header=None)

# 将前3行设置为标题
header = df.iloc[:3, :].fillna(method='ffill', axis=1)
df.columns = pd.MultiIndex.from_arrays(header.values)
df = df.iloc[3:, :]

# 选择指定的列
df = df.loc[:, ('month', 'week', ('PLAN 2023', 'Traffic per channel', 'red'))]

# 重命名列以删除多级标题
df.columns = ['month', 'week', 'P_traffic_red']

# 打印最终数据框
print(df)

希望这可以帮助您读取Excel文件并处理多级标题。

英文:

I have an excel file where first 3 rows have header names, I want to read it in pandas but facing difficulty in the multi-index header.

		                             PLAN 2023						
		     Traffic per channel 			       Traffic Share per Channel		
month week   All Traffic red green orange          red green orange
jan    1     100	     50  30    20              50% 30%   20%

for 'month' and 'week', I have the header names stored in row 3 but for others, it's distributed in row 1,2,3. Also, the row number is not fixed, therefore, I need to read by headers.

The final expected output should look like this

month   week   plan_2023_Traffic_per_channel_All  .....plan_2023_Traffic_Share_per_channel_orange
jan     1                     100                                            20%

my script is below, for simplicity, I am just printing 1 value

import pandas as pd

# Load the Excel file
df = pd.read_excel('test_3.xlsx', sheet_name='WEEK - 2023', header=None)

# Set the first 3 rows as the header
header = df.iloc[:3,:].fillna(method='ffill', axis=1)
df.columns = pd.MultiIndex.from_arrays(header.values)
df = df.iloc[3:,:]

# Select only the specified columns
df = df.loc[:, ('month', 'week', ('PLAN 2023', 'Traffic per channel', 'red'))]

# Rename the columns to remove the multi-level header
df.columns = ['month', 'week', 'P_traffic_red']

# Print the final data frame
print(df)


picture for reference

使用pandas读取基于多索引标题的Excel文件

Thank you in advance

答案1

得分: 2

你可以尝试以下代码:

df = pd.read_excel('test_3.xlsx', header=None)

cols = (df.iloc[:3].ffill(axis=1)
          .apply(lambda x: '_'.join(x.dropna().str.replace(' ', '_'))))

df = df.iloc[3:].set_axis(cols, axis=1)

输出结果:

>>> df
  statMonthName statWeek Plan_2023_Traffic_per_channel_All_Traffic  ... Plan_2023_Traffic_Share_per_Chanel_red Plan_2023_Traffic_Share_per_Chanel_green Plan_2023_Traffic_Share_per_Chanel_orange
3           jan        1                                       100  ...                                    50%                                      30%                                       20%

[1 rows x 9 columns]

>>> df.columns
Index(['statMonthName', 'statWeek',
       'Plan_2023_Traffic_per_channel_All_Traffic',
       'Plan_2023_Traffic_per_channel_red',
       'Plan_2023_Traffic_per_channel_green',
       'Plan_2023_Traffic_per_channel_orange',
       'Plan_2023_Traffic_Share_per_Chanel_red',
       'Plan_2023_Traffic_Share_per_Chanel_green',
       'Plan_2023_Traffic_Share_per_Chanel_orange'],
      dtype='object')
英文:

You can try:

df = pd.read_excel('test_3.xlsx', header=None)

cols = (df.iloc[:3].ffill(axis=1)
          .apply(lambda x: '_'.join(x.dropna().str.replace(' ', '_'))))

df = df.iloc[3:].set_axis(cols, axis=1)

Output:

>>> df
  statMonthName statWeek Plan_2023_Traffic_per_channel_All_Traffic  ... Plan_2023_Traffic_Share_per_Chanel_red Plan_2023_Traffic_Share_per_Chanel_green Plan_2023_Traffic_Share_per_Chanel_orange
3           jan        1                                       100  ...                                    50%                                      30%                                       20%

[1 rows x 9 columns]

>>> df.columns
Index(['statMonthName', 'statWeek',
       'Plan_2023_Traffic_per_channel_All_Traffic',
       'Plan_2023_Traffic_per_channel_red',
       'Plan_2023_Traffic_per_channel_green',
       'Plan_2023_Traffic_per_channel_orange',
       'Plan_2023_Traffic_Share_per_Chanel_red',
       'Plan_2023_Traffic_Share_per_Chanel_green',
       'Plan_2023_Traffic_Share_per_Chanel_orange'],
      dtype='object')

huangapple
  • 本文由 发表于 2023年3月9日 23:30:46
  • 转载请务必保留本文链接:https://go.coder-hub.com/75686755.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定