NetworkX有一个函数可以找到0度节点的k个最近节点吗?

huangapple go评论72阅读模式
英文:

Is there a NetworkX function to find the k-nearest nodes of 0-degree nodes

问题

我正在尝试连接建筑物(和其他区域)的质心到表示道路网络的 NetworkX.MultiGraph。这些质心都是0度节点。

我已经阅读了关于在同一图中查找最近邻居的帖子,但未找到关于“离网格”节点的任何信息。Graph.neighbors()ego_graph() 对于质心节点都返回空的可迭代对象。

我想知道是否有适用于这种情况的函数。我是否必须迭代所有道路上的节点来计算它们与质心的距离?还是有更好的想法?


NetworkX有一个函数可以找到0度节点的k个最近节点吗?

红点是要连接的节点。

最小示例数据

some_edges = [((12965572.317313856, 4069201.5797910197),
  (12965582.853703659, 4069201.5541923903)),
 ((12965582.853703659, 4069201.5541923903),
  (12965593.39009346, 4069201.528593761)),
 ((12965593.39009346, 4069201.528593761),
  (12965637.645157026, 4069201.426199232)),
 ((12965593.39009346, 4069201.528593761),
  (12965594.291781338, 4069120.115297204)),
 ((12965593.39009346, 4069201.528593761),
  (12965593.790843628, 4069233.4285842725))]

a_centroid = [((12965783.891266523, 4069098.4402361237), {'id': 839812059, 'node_type': 'area_centroid', 'amenity': 'library', 'building': 'yes', 'name': '逸夫图书馆', 'name:zh': '逸夫图书馆', 'name:zh-Hans': '逸夫图书馆', 'name:zh-Hant': '逸夫圖書館', 'operator': '北京工业大学'})]
G = nx.MultiGraph(some_edges)
G.add_nodes_from(a_centroid)

color_map = ['red' if 'name' in attr.keys() else 'blue' for n, attr in G.nodes.data()]
nx.draw(G, {n: (n[0], n[1]) for n in G.nodes()}, node_color=color_map, ax=plt.gca())

应该生成一个类似这样的最小示例图:
NetworkX有一个函数可以找到0度节点的k个最近节点吗?

其中蓝色节点是图的一部分,而红色节点是要连接的质心(连接到图中最近的节点)。

英文:

I am trying to connect the centroids of buildings (and other areas) to a NetworkX.MultiGraph representing the road network. These centroids are all 0-degree nodes.

I have read posts on finding the nearest neighbors in the same graph but failed to find anything for 'off-grid' nodes. Graph.neighbors() and ego_graph() all returned empty iterables for the centroid nodes.

I wonder if there is a function for this case. Do I have to iterate over all the nodes on the roads to compute their distances to the centroid? Or there is a better idea?

The Graph
NetworkX有一个函数可以找到0度节点的k个最近节点吗?

The red dots are the nodes to connect.

Minimal example data

some_edges = [((12965572.317313856, 4069201.5797910197),
  (12965582.853703659, 4069201.5541923903)),
 ((12965582.853703659, 4069201.5541923903),
  (12965593.39009346, 4069201.528593761)),
 ((12965593.39009346, 4069201.528593761),
  (12965637.645157026, 4069201.426199232)),
 ((12965593.39009346, 4069201.528593761),
  (12965594.291781338, 4069120.115297204)),
 ((12965593.39009346, 4069201.528593761),
  (12965593.790843628, 4069233.4285842725))]

a_centroid = [((12965783.891266523, 4069098.4402361237), {'id': 839812059, 'node_type': 'area_centroid', 'amenity': 'library', 'building': 'yes', 'name': '逸夫图书馆', 'name:zh': '逸夫图书馆', 'name:zh-Hans': '逸夫图书馆', 'name:zh-Hant': '逸夫圖書館', 'operator': '北京工业大学'})]
G = nx.MultiGraph(some_edges)
G.add_nodes_from(a_centroid)

color_map = ['red' if 'name' in attr.keys() else 'blue' for n, attr in G.nodes.data()]
nx.draw(G, {n: (n[0], n[1]) for n in G.nodes()}, node_color=color_map, ax=plt.gca())

should produce a minimal example with a graph like this:
NetworkX有一个函数可以找到0度节点的k个最近节点吗?

where the blue nodes are parts of the graph while the red node is a centroid to connect (to its nearest node in the graph).

答案1

得分: 1

为了简单起见,您可以使用scipy.spatial包中的KDTree

from scipy.spatial import KDTree

# 将孤立节点(红色)与道路节点(蓝色)分开
orphans = [node for node, degree in G.degree if degree == 0]
nodes = [node for node, degree in G.degree if degree > 0]

# 找到每个红色节点最近的蓝色节点
distances, indices = KDTree(nodes).query(orphans, k=1)

# 构建新的边连接红色节点
edges = [(orphan, nodes[index]) for orphan, index in zip(orphans, indices)]
G.add_edges_from(edges)

输出:

>>> edges
[((12965783.891266523, 4069098.4402361237), (12965637.645157026, 4069201.426199232))]

NetworkX有一个函数可以找到0度节点的k个最近节点吗?

英文:

To be simple, you can use KDTree from scipy.spatial package:

from scipy.spatial import KDTree

# Separate orphan nodes (red) from road nodes (blue)
orphans = [node for node, degree in G.degree if degree == 0]
nodes = [node for node, degree in G.degree if degree > 0]

# Find the nearest blue node to each red node
distances, indices = KDTree(nodes).query(orphans, k=1)

# Build new edges to join red nodes
edges = [(orphan, nodes[index]) for orphan, index in zip(orphans, indices)]
G.add_edges_from(edges)

Output:

>>> edges
[((12965783.891266523, 4069098.4402361237), (12965637.645157026, 4069201.426199232))]

NetworkX有一个函数可以找到0度节点的k个最近节点吗?

huangapple
  • 本文由 发表于 2023年3月8日 15:59:49
  • 转载请务必保留本文链接:https://go.coder-hub.com/75670541.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定