计算百分比变化,通过增加窗口大小直到期间。

huangapple go评论75阅读模式
英文:

Compute percentage change by increasing window size up to period

问题

如果我有这个系列:

s = pd.Series([90, 91, 85, 95])

如果我使用周期为2来计算百分比变化,结果如下:

s.pct_change(periods=2)

结果将是:

0         NaN
1         NaN
2   -0.055556
3    0.043956
dtype: float64

但假设我有几年的数据,我想计算年度滚动回报率,使用 pct_change(365)。然后我会失去一年的数据(在这种情况下,我有365个NaN值,然后才有一个有效的观测值)。

我想要的是从1开始,然后逐渐增加,直到达到指定的periods,而不是失去一年的数据。

换句话说,我想要的输出是:

0         NaN
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

或者

0           0
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

这是否可能?我知道pandas.DataFrame.rolling基本具有此功能,使用参数min_periods,但我找不到类似的内容pandas.DataFrame.pct_change

英文:

Say I have this series

s = pd.Series([90, 91, 85, 95])

If I compute the percentage change with a period of 2 I get

s.pct_change(periods=2)

0         NaN
1         NaN
2   -0.055556
3    0.043956
dtype: float64

But say I have a couple of years of data and I want to compute the year over year (YoY) rolling returns, with pct_change(365). Then I would loose a year's worth of data (in the sense that I have 365 NaN values before I have a valid observation).

I would instead like to compromise by starting as if I had a period of 1, 2, then 3 and so on up until I reach the specified periods.

In other words, I would like an output of the likes of

0         NaN
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

or

0           0
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

Is this possible? I know that pandas.DataFrame.rolling has basically this functionality with the argument min_periods, but I couldn't find something similar for pandas.DataFrame.pct_change.

答案1

得分: 2

你可以使用 [tag:numpy] 及其 sliding_window_view

from numpy.lib.stride_tricks import sliding_window_view as swv

N = 2

v = swv(np.pad(s, (N, 0), constant_values=s.iloc[0]), N+1)

out = pd.Series((v[:, -1]-v[:, 0])/v[:, 0], index=s.index)

输出:

0    0.000000
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

使用 pandas,它看起来像是 rolling,其中你使用窗口的第一个和最后一个值:

N = 2

s.rolling(N+1, min_periods=0).apply(lambda x: (x.iloc[-1]-x.iloc[0])/x.iloc[0])

输出:

0    0.000000
1    0.011111
2   -0.055556
3    0.043956
dtype: float64
英文:

You can use [tag:numpy] and its sliding_window_view:

from numpy.lib.stride_tricks import sliding_window_view as swv

N = 2

v = swv(np.pad(s, (N, 0), constant_values=s.iloc[0]), N+1)

out = pd.Series((v[:, -1]-v[:, 0])/v[:, 0], index=s.index)

Output:

0    0.000000
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

With pandas, it looks like a rolling in which you use the first and last value of the window:

N = 2

s.rolling(N+1, min_periods=0).apply(lambda x: (x.iloc[-1]-x.iloc[0])/x.iloc[0])

Output:

0    0.000000
1    0.011111
2   -0.055556
3    0.043956
dtype: float64

huangapple
  • 本文由 发表于 2023年3月7日 23:29:31
  • 转载请务必保留本文链接:https://go.coder-hub.com/75663969.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定