如何对DICOM图像进行遮蔽?

huangapple go评论68阅读模式
英文:

How to mask a DICOM image?

问题

我想要分析从头部CT中提取的"Bone"区域。

为此,我读取了DICOM文件,并对像素值小于200的区域进行了掩蔽,用"0"来填充。

然而,因为在DICOM图像中"0"代表"水",我不知道这是否是一种适当的方式。

英文:

I would like to analyze only "Bone" regions extracted from Head CT.

For that, I read the DICOM files and masked regions where pixel values were less than 200 by filling in "0".

However, because "0" means "water" in the DICOM image, I don't know whether this is an appropriate way or not.

import pydicom
import numpy as np

dcm_img = pydicom.dcmread("0000200.dcm")
dcm_arr = dcm_img.pixel_array
masked_arr = np.where(dcm_arr < 200, 0, dcm_arr)

答案1

得分: 3

根据你的问题,我不太清楚你想如何分析CT图像中的骨骼区域,所以很难提供一个定制的答案。一般来说,我不会将图像中的值设为零,因为正如你所说,CT图像中的每个值都与特定的组织属性相关联(而且在图像处理中,通常不将图像和掩模信息混为一谈通常是不明智的)。

相反,我可能会使用掩蔽数组,屏蔽掉所有低于骨阈值的值,如下所示:

from numpy.ma import masked_array
...
masked_arr = masked_array(data=dcm_arr, mask=dcm_arr < 200)

有了这个,你可以使用掩蔽数组提供的操作,例如masked_arr.mean(),它计算所有未被掩蔽掉的体素的平均值(这就是为什么我们屏蔽了低于阈值的值)。

或者,但非常类似,我可能会创建一个新的(常规的)Numpy数组,其中包含一个布尔掩码,标记所有位于骨阈值之上的值(例如is_bone = dcm_arr >= 200),我稍后会在分析中使用它来过滤值。

无论如何,我会尽量保持掩蔽值和实际CT体素值分开。

英文:

From your question, it is not quite clear to me how exactly you want to analyze the bone regions in your CT image, so it is hard to provide a tailored answer. Generally though, I would not set values to zero in the image, because – as you said – each value in a CT image is associated with specific tissue properties (also, very generally in image processing, it is usually not a good idea to conflate image and masking information).

Instead, I would probably work with a masked array, masking out all the values that lie below the bone threshold, like so:

from numpy.ma import masked_array
...
masked_arr = masked_array(data=dcm_arr, mask=dcm_arr < 200)

With this, you could then use the operations that a masked array provides, such as masked_arr.mean(), which calculates the mean of all voxels that have not been masked out (which is why we masked the values below the threshold).

Alternatively, but very similar, I would probably create a new (regular) Numpy array, containing a boolean mask that marks all the values that do lie above the bone threshold (e.g. is_bone = dcm_arr >= 200), which I would later use for filtering values in my analyses.

In any case, I would try to keep the mask values and the actual CT voxel values separate.

huangapple
  • 本文由 发表于 2023年3月7日 14:42:32
  • 转载请务必保留本文链接:https://go.coder-hub.com/75658714.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定