英文:
What is '\u200d1500'?
问题
以下是代码部分的翻译:
I crawled data from a website which was in string format I replaced string character and now data only contains number. But when I want to convert this column to numeric I get that error. I have two columns which first is previous_prices other is now_prices. If now the product is not on sale program fill nas with previous_prices. Previous_prices type is int64, now_prices type is object. Error is: ValueError: invalid literal for int() with base 10: '\u200d1500'.
实际上,我看到了一个类似的问题,但那个问题与 ''\u200d1500'' 不相关。
| now_prices_after_fillna | 
|---|
| 1450 | 
| 1500 | 
| 700 | 
| 1700 | 
| 2090 | 
当我将 now_prices 更改为整数,然后使用 previous_prices 填充缺失值时,一般数据类型变为整数。但当我尝试将数据导出到 Excel 时,出现了此错误。我无法理解问题。
英文:
I crawled data from a website which was in string format I replaced string character and now data only contains number. But when I want to convert this column to numeric I get that error. I have two columns which first is previous_prices other is now_prices. If now the product is not on sale program fill nas with previous_prices. Previous_prices type is int64, now_prices type is object. Error is: ValueError: invalid literal for int() with base 10: '\u200d1500'.
Actually I saw a similiar question but that question is not relevant to '\u200d1500'.
| now_prices_after_fillna | 
|---|
| 1450 | 
| 1500 | 
| 700 | 
| 1700 | 
| 2090 | 
There are strange situation when When I change now_prices to integer and then fill na with previous_prices general data type was int. But when I want to export that data to excel I get this error. I can not understand problem.
答案1
得分: 2
因为\u200d是不可打印字符,以下是去除它并将其转换为整数的解决方案:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500']})
print(df)
  now_prices_after_fillna
0                    1450
1                   1500
# https://stackoverflow.com/a/54451873/2901002
import sys
# 构建一个将所有不可打印字符映射到None的表
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """替换字符串中的不可打印字符。"""
    # str的translate方法从字符串中删除映射到None的字符
    return s.translate(NOPRINT_TRANS_TABLE)
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print(df)
 now_prices_after_fillna
0                     1450
1                     1500
如果混合了数字和字符串值,可以尝试使用try和except语句:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500', 1000]})
print(df)
# https://stackoverflow.com/a/54451873/2901002
import sys
# 构建一个将所有不可打印字符映射到None的表
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """替换字符串中的不可打印字符。"""
    # str的translate方法从字符串中删除映射到None的字符
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print(df)
 now_prices_after_fillna
0                     1450
1                     1500
2                     1000
测试你的真实数据:
df = pd.read_excel('your_updated_file2222.xlsx')
# https://stackoverflow.com/a/54451873/2901002
import sys
# 构建一个将所有不可打印字符映射到None的表
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """替换字符串中的不可打印字符。"""
    # str的translate方法从字符串中删除映射到None的字符
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s
df['price'] = df['price'].apply(make_printable).astype(int)
print(df)
     price
0     1450
1     1500
2      700
3     1700
4     2090
..     ...
206   1500
207   1290
208   1500
209   1560
210   1800
[211 行 x 1 列]
英文:
Because \u200d is not printable character, here is solution for remove it and converting to integers:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500']})
    
print (df)
  now_prices_after_fillna
0                    1450
1                   1500
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """Replace non-printable characters in a string."""
    # the translate method on str removes characters
    # that map to None from the string
    return s.translate(NOPRINT_TRANS_TABLE)
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print (df)
   now_prices_after_fillna
0                     1450
1                     1500
Another idea if mixed numeric with strings values add try with except statement:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500', 1000]})
    
print (df)
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """Replace non-printable characters in a string."""
    # the translate method on str removes characters
    # that map to None from the string
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
                                                              .astype(int))
print (df)
   now_prices_after_fillna
0                     1450
1                     1500
2                     1000
Test your real data:
df = pd.read_excel('your_updated_file2222.xlsx')
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
    i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
    """Replace non-printable characters in a string."""
    # the translate method on str removes characters
    # that map to None from the string
    try:
        return s.translate(NOPRINT_TRANS_TABLE)
    except AttributeError:
        return s
df['price'] = df['price'].apply(make_printable).astype(int)
print (df)
     price
0     1450
1     1500
2      700
3     1700
4     2090
..     ...
206   1500
207   1290
208   1500
209   1560
210   1800
[211 rows x 1 columns]
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。



评论