STEM图像分析使用OpenCV

huangapple go评论84阅读模式
英文:

STEM image analysis using OpenCV

问题

我正在分析TEM/STEM扫描图像。白色圆圈代表原子,而黑色是背景。捕获的图像有噪音,圆圈的边界不清晰。

您运行了以下代码:

# Python代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage import feature
from scipy.optimize import curve_fit

img = cv2.imread('input_image.tif', cv2.IMREAD_GRAYSCALE)

img_noise_removed = cv2.medianBlur(img, 3)

mask = cv2.GaussianBlur(img_noise_removed, (101, 101), 0)

img_subtracted = cv2.absdiff(img_noise_removed, mask)

edges = feature.canny(img_subtracted, sigma=1)

cv2.imwrite('noise_removed_image.tif', img_noise_removed)

但它没有解决原子边界的问题。

第二部分的代码如下:

import cv2
import numpy as np
from skimage.feature import peak_local_max
from skimage.filters import threshold_otsu

img = cv2.imread('test2.tif', cv2.IMREAD_GRAYSCALE)

# 中值滤波和Laplacian滤波
img_median = cv2.medianBlur(img, 3)
img_laplacian = cv2.Laplacian(img_median, cv2.CV_64F, ksize=3)

# 使用Otsu方法对图像进行阈值处理
thresh = threshold_otsu(img_laplacian)
binary = img_laplacian > thresh

# 在图像中找到局部最大值的坐标
coords = peak_local_max(binary, min_distance=5, threshold_abs=0.3)

# 将坐标写入文本文件
with open('coordinates.txt', 'w') as f:
    for coord in coords:
        f.write('{} {}\n'.format(coord[1], coord[0]))

希望这些信息对您有所帮助。

英文:

I am analyzing TEM/STEM scanned image. The white circles are the atoms whereas the black is the background. The captured image is noisy. The circle boundary is not clear.

STEM图像分析使用OpenCV

Is there any way to enhance the image to show the circle boundary?

I run the following code:

#Python code
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage import feature
from scipy.optimize import curve_fit


img = cv2.imread('input_image.tif', cv2.IMREAD_GRAYSCALE)

img_noise_removed = cv2.medianBlur(img, 3)

mask = cv2.GaussianBlur(img_noise_removed, (101, 101), 0)

img_subtracted = cv2.absdiff(img_noise_removed, mask)


edges = feature.canny(img_subtracted, sigma=1)


cv2.imwrite('noise_removed_image.tif', img_noise_removed)

But it is not resolving the atom boundary.

#Second part of the code

import cv2
import numpy as np
from skimage.feature import peak_local_max
from skimage.filters import threshold_otsu

img = cv2.imread('test2.tif', cv2.IMREAD_GRAYSCALE)

# median filter and a Laplacian filter
img_median = cv2.medianBlur(img, 3)
img_laplacian = cv2.Laplacian(img_median, cv2.CV_64F, ksize=3)

# Threshold the image using Otsu's method
thresh = threshold_otsu(img_laplacian)
binary = img_laplacian > thresh

# Finding the coordinates of the local maxima in the image
coords = peak_local_max(binary, min_distance=5, threshold_abs=0.3)

# Writing the coordinates to a text file
with open('coordinates.txt', 'w') as f:
    for coord in coords:
        f.write('{} {}\n'.format(coord[1], coord[0]))

答案1

得分: 3

以下是翻译好的内容,代码部分不包括在内:

"The other two answers attempt to extract an outline for each atom, then find the centroid of those outlines. I think this is the wrong approach, you want to use the gray values in the image for more than finding an outline. By computing the gray-weighted first order moment (centroid of the gray-scale blob, rather than the centroid of the outline) you can get a much more precise result. Also, you can get this result without filtering the image first.

I am assuming the example image is comparable to the actual images you deal with. If the actual images are more noisy, you might need to adjust some parameters to the watershed function for it to be robust against that noise.

I'm using DIPlib (disclaimer: I'm an author) because I'm more familiar with it than OpenCV, and because DIPlib is meant for precise measurements, unlike OpenCV."

这段文字讨论了使用灰度值来精确测量原子的位置,而不是仅仅提取轮廓并计算轮廓的质心。作者建议使用灰度加权的一阶矩(灰度尺度斑点的质心,而不是轮廓的质心)来获得更精确的结果,而且可以在不对图像进行滤波的情况下获得这个结果。

"I am assuming the example image is comparable to the actual images you deal with. If the actual images are more noisy, you might need to adjust some parameters to the watershed function for it to be robust against that noise.

I'm using DIPlib (disclaimer: I'm an author) because I'm more familiar with it than OpenCV, and because DIPlib is meant for precise measurements, unlike OpenCV."

这部分提到了如果实际图像比示例图像更嘈杂,可能需要调整分水岭函数的一些参数以使其对抗噪音。作者还提到使用DIPlib进行测量,因为作者更熟悉它,而且DIPlib专注于精确测量。

这部分是代码示例,不需要翻译:

import diplib as dip

# Read in the image
img = dip.ImageRead("5V6nl.jpg", 'bioformats')
img = img(0)  # The JPEG has 3 channels, though it's a gray-scale image

# We want to measure the position of the atoms in pixels. If there is pixel
# size information in the input image, it will be attached to the image,
# and the measurement will be in physical units. To avoid this, we remove
# the pixel size information. But you can keep it if you need it!
img.SetPixelSize([])

# The watershed of the inverse image gives a label for each atom, we'll be
# measuring inside each label independently
# (the "high first" flag is like inverting the image)
mask = img > 20
labels = dip.Watershed(img, mask, flags={"labels", "high first"})

# The "Gravity" feature is the gray-weighted first order moment
msr = dip.MeasurementTool.Measure(labels, img, ["Gravity"])

# Iterate over the resulting centroids.
# Note that there is no specific order to them.
gravity = msr["Gravity"]
for o in msr.Objects():
   values = gravity[o]  # this is a list with two elements (x, y)
   print(f"Object {o}: ({values[0]:.4f}, {values[1]:.4f})")

这段代码是用于测量原子位置的Python示例代码,它使用DIPlib库。它首先读取图像,然后进行分水岭分割,最后测量原子的位置,并打印结果。

这是打印结果:

"This prints out a list with 325 items:

Object 1: (137.8478, 151.9975)
Object 2: (24.9894, 89.0565)
Object 3: (49.9969, 89.0618)
Object 4: (25.0534, 151.9687)
Object 5: (275.0785, 130.1821)
Object 6: (125.3453, 152.0229)
...

这是测量结果的示例,显示了每个原子的位置坐标。

"Note that the atoms at the edge of the image will have wrong centroids. I would suggest ignoring them in these measurements, for example by discarding centroids that are too close to any of the image boundaries."

这部分提到图像边缘的原子可能会有错误的质心,建议在测量中忽略它们,可以通过丢弃接近图像边界的质心来实现。

"The labels image looks like this:

STEM图像分析使用OpenCV

You notice how the regions in which we measure are quite loose. The only goal is to contain the full blob for each atom, so that the centroid measurement works correctly. We don't care about the exact extent of these regions, any darker pixels they contain will not affect the result very much.

If you examine your intermediate labels image and notice multiple regions for one atom, it means you have more noise in your image than we have in the example image here. In that case you need to adjust the maxDepth parameter to dip.Watershed(). This parameter controls merging of regions. Increasing that parameter (the default is 1) will result in fewer regions. You will have to tweak it until you see exactly one region per atom."

这部分说明了labels图像的外观,以及如何处理测量区域。作者提到测量区域的目标是包含每个原子的完整斑点,而不关心这些区域的确切范围。如果您的labels图像中有一个原子有多个区域,那意味着您的图像中有更多的噪声,需要调整dip.Watershed()函数的maxDepth参数来控制区域的合并,直到每个原子有一个区域。

英文:

The other two answers attempt to extract an outline for each atom, then find the centroid of those outlines. I think this is the wrong approach, you want to use the gray values in the image for more than finding an outline. By computing the gray-weighted first order moment (centroid of the gray-scale blob, rather than the centroid of the outline) you can get a much more precise result. Also, you can get this result without filtering the image first.

I am assuming the example image is comparable to the actual images you deal with. If the actual images are more noisy, you might need to adjust some parameters to the watershed function for it to be robust against that noise.

I'm using DIPlib [disclaimer: I'm an author] because I'm more familiar with it than OpenCV, and because DIPlib is meant for precise measurements, unlike OpenCV.

import diplib as dip

# Read in the image
img = dip.ImageRead("5V6nl.jpg", 'bioformats')
img = img(0)  # The JPEG has 3 channels, though it's a gray-scale image

# We want to measure the position of the atoms in pixels. If there is pixel
# size information in the input image, it will be attached to the image,
# and the measurement will be in physical units. To avoid this, we remove
# the pixel size information. But you can keep it if you need it!
img.SetPixelSize([])

# The watershed of the inverse image gives a label for each atom, we'll be
# measuring inside each label independently
# (the "high first" flag is like inverting the image)
mask = img > 20
labels = dip.Watershed(img, mask, flags={"labels", "high first"})

# The "Gravity" feature is the gray-weighted first order moment
msr = dip.MeasurementTool.Measure(labels, img, ["Gravity"])

# Iterate over the resulting centroids.
# Note that there is no specific order to them.
gravity = msr["Gravity"]
for o in msr.Objects():
   values = gravity[o]  # this is a list with two elements (x, y)
   print(f"Object {o}: ({values[0]:.4f}, {values[1]:.4f})")

This prints out a list with 325 items:

Object 1: (137.8478, 151.9975)
Object 2: (24.9894, 89.0565)
Object 3: (49.9969, 89.0618)
Object 4: (25.0534, 151.9687)
Object 5: (275.0785, 130.1821)
Object 6: (125.3453, 152.0229)
...

Note that the atoms at the edge of the image will have wrong centroids. I would suggest ignoring them in these measurements, for example by discarding centroids that are too close to any of the image boundaries.


The labels image looks like this:

STEM图像分析使用OpenCV

You notice how the regions in which we measure are quite loose. The only goal is to contain the full blob for each atom, so that the centroid measurement works correctly. We don't care about the exact extent of these regions, any darker pixels they contain will not affect the result very much.

If you examine your intermediate labels image and notice multiple regions for one atom, it means you have more noise in your image than we have in the example image here. In that case you need to adjust the maxDepth parameter to dip.Watershed(). This parameter controls merging of regions. Increasing that parameter (the default is 1) will result in fewer regions. You will have to tweak it until you see exactly one region per atom.

labels = dip.Watershed(img, mask, maxDepth=10, flags={"labels", "high first"})

答案2

得分: 1

以下是Python/OpenCV中找到原子质心的一种方法:

  • 读取输入
  • 转换为灰度
  • 阈值化以分离原子
  • 获取轮廓
  • 对于每个轮廓,获取图像矩并计算质心。
  • 打印每个质心
  • 在输入的副本上绘制质心处的小圆圈
  • 保存结果

输入:

STEM图像分析使用OpenCV

import cv2
import numpy as np

# 读取图像
img = cv2.imread('STEM.jpg')

# 转换为灰度
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 阈值化
thresh = cv2.threshold(gray, 164, 255, cv2.THRESH_BINARY)[1]

# 获取轮廓
result = img.copy()
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
index = 1
for cntr in contours:
    M = cv2.moments(cntr)
    cx = int(M["m10"] / M["m00"])
    cy = int(M["m01"] / M["m00"])
    print(index, cx, cy)
    cv2.circle(result, (cx, cy), 2, (0, 0, 255), -1)
    index = index + 1

# 保存结果
cv2.imwrite('STEM_centroids.jpg', result)

# 显示结果
cv2.imshow('thresh', thresh)
cv2.imshow('result', result)
cv2.waitKey(0)

阈值化:

STEM图像分析使用OpenCV

结果:

STEM图像分析使用OpenCV

索引 质心(x y)

1 302 254
2 290 254
3 277 254
4 265 254
5 252 255
6 239 254
7 227 254
8 214 255
9 202 254
10 189 255
11 176 254
12 164 254
13 151 255
14 138 254
15 126 254
16 113 254
17 101 254
18 88 255
19 75 254
20 63 254
21 50 255
22 37 254
23 25 254
24 12 255
25 1 254
26 302 234
27 289 234
28 277 234
29 264 234
30 251 234
31 239 234
32 226 234
33 214 234
34 201 234
35 189 234
36 176 234
37 163 234
38 151 234
39 138 234
40 126 234
41 113 234
42 100 234
43 88 234
44 75 234
45 63 234
46 50 234
47 37 234
48 25 234
49 12 234
50 1 234
51 301 214
52 289 213
53 276 213
54 264 213
55 251 213
56 238 213
57 226 213
58 213 213
59 201 213
60 188 213
61 176 213
62 163 213
63 151 213
64 138 213
65 125 213
66 113 213
67 100 213
68 88 213
69 75 214
70 62 213
71 50 213
72 37 213
73 25 213
74 12 213
75 1 213
76 301 193
77 288 193
78 276 193
79 263 193
80 251 193
81 238 193
82 226 193
83 213 193
84 200 193
85 188 193
86 175 193
87 163 193
88 150 193
89 138 193
90 125 193
91 113 193
92 100 193
93 87 193
94 75 193
95 62 193
96 50 193
97 37 193
98 25 193
99 12 193
100 1 193
101 275 172
102 263 172
103 250 172
104 238 172
105 225 172
106 213 172
107 200 172
108 188 172
109 175 172
110 163 172
111 150 172
112 138 172
113 125 172
114 112 172
115 100 172
116 87 172
117 75 172
118 62 172
119 50 172
120 37 172
121 25 172
122 12 172
123 1 172
124 300 171
125 288 171
126 175 152
127 162 152
128 150 152
129 137 152
130 125 152
131 112 151
132 100 151
133 87 152
134 75 152
135 62 152
136 50 151
137 37 152
138 25 151
139 12 152
140 1 151
141 300 150
142 287 150
143 275 150
144 262 150
145 250 150
146 237 150
147 225 150
148 212 150
149 200 150
150 187 150
151 299 130
152 287 130
153 275 130
154 262 130
155 250 130
156 237 130
157 225 130
158 212 130
159 200 130
160 187 130
161 175 130
162 162 130
163 150 130
164 137 130
165 125 130
166 112 130
167 100 130
168 87 130
169 75 130
170 62 130
171 50 130
172 37 130
173 25 130
174 12 130
175 1 130
176 287 109
177 262 109
178 249 109
179 237 109
180 212 109
181 187 109
182 162 109
183 137

英文:

Here is one way to find the centroids of the atoms in Python/OpenCV.

  • Read the input
  • Convert to grayscale
  • Threshold so as to separate the atoms
  • Get contours
  • For each contour, get the image moments and compute the centroids.
  • Print each centroid
  • Draw a small circle at the centroid on a copy of the input
  • Save the results

Input:

STEM图像分析使用OpenCV

import cv2
import numpy as np

# read image
img = cv2.imread('STEM.jpg')

# convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# threshold
thresh = cv2.threshold(gray, 164, 255, cv2.THRESH_BINARY)[1]

# get contours
result = img.copy()
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
index=1
for cntr in contours:
	M = cv2.moments(cntr)
	cx = int(M["m10"] / M["m00"])
	cy = int(M["m01"] / M["m00"])
	print(index,cx,cy)
	cv2.circle(result, (cx,cy), 2, (0,0,255), -1)
	index = index + 1

# save results
cv2.imwrite('STEM_centroids.jpg', result)

# show results
cv2.imshow('thresh', thresh)
cv2.imshow('result', result)
cv2.waitKey(0)

Threshold:

STEM图像分析使用OpenCV

Result:

STEM图像分析使用OpenCV

Index Centroid(x y)

1 302 254
2 290 254
3 277 254
4 265 254
5 252 255
6 239 254
7 227 254
8 214 255
9 202 254
10 189 255
11 176 254
12 164 254
13 151 255
14 138 254
15 126 254
16 113 254
17 101 254
18 88 255
19 75 254
20 63 254
21 50 255
22 37 254
23 25 254
24 12 255
25 1 254
26 302 234
27 289 234
28 277 234
29 264 234
30 251 234
31 239 234
32 226 234
33 214 234
34 201 234
35 189 234
36 176 234
37 163 234
38 151 234
39 138 234
40 126 234
41 113 234
42 100 234
43 88 234
44 75 234
45 63 234
46 50 234
47 37 234
48 25 234
49 12 234
50 1 234
51 301 214
52 289 213
53 276 213
54 264 213
55 251 213
56 238 213
57 226 213
58 213 213
59 201 213
60 188 213
61 176 213
62 163 213
63 151 213
64 138 213
65 125 213
66 113 213
67 100 213
68 88 213
69 75 214
70 62 213
71 50 213
72 37 213
73 25 213
74 12 213
75 1 213
76 301 193
77 288 193
78 276 193
79 263 193
80 251 193
81 238 193
82 226 193
83 213 193
84 200 193
85 188 193
86 175 193
87 163 193
88 150 193
89 138 193
90 125 193
91 113 193
92 100 193
93 87 193
94 75 193
95 62 193
96 50 193
97 37 193
98 25 193
99 12 193
100 1 193
101 275 172
102 263 172
103 250 172
104 238 172
105 225 172
106 213 172
107 200 172
108 188 172
109 175 172
110 163 172
111 150 172
112 138 172
113 125 172
114 112 172
115 100 172
116 87 172
117 75 172
118 62 172
119 50 172
120 37 172
121 25 172
122 12 172
123 1 172
124 300 171
125 288 171
126 175 152
127 162 152
128 150 152
129 137 152
130 125 152
131 112 151
132 100 151
133 87 152
134 75 152
135 62 152
136 50 151
137 37 152
138 25 151
139 12 152
140 1 151
141 300 150
142 287 150
143 275 150
144 262 150
145 250 150
146 237 150
147 225 150
148 212 150
149 200 150
150 187 150
151 299 130
152 287 130
153 275 130
154 262 130
155 250 130
156 237 130
157 225 130
158 212 130
159 200 130
160 187 130
161 175 130
162 162 130
163 150 130
164 137 130
165 125 130
166 112 130
167 100 130
168 87 130
169 75 130
170 62 130
171 50 130
172 37 130
173 25 130
174 12 130
175 1 130
176 287 109
177 262 109
178 249 109
179 237 109
180 212 109
181 187 109
182 162 109
183 137 109
184 112 109
185 87 109
186 62 109
187 37 109
188 12 109
189 299 109
190 274 109
191 225 109
192 200 109
193 175 109
194 150 109
195 125 109
196 100 109
197 75 109
198 50 109
199 25 109
200 1 109
201 299 89
202 287 89
203 274 89
204 262 89
205 249 89
206 237 89
207 224 88
208 212 89
209 199 89
210 187 89
211 174 89
212 162 89
213 149 89
214 137 89
215 124 89
216 112 89
217 99 89
218 87 89
219 74 89
220 62 89
221 49 89
222 37 89
223 24 89
224 12 89
225 1 89
226 274 68
227 262 68
228 249 68
229 237 68
230 224 68
231 212 68
232 199 68
233 187 68
234 174 68
235 162 68
236 149 68
237 137 68
238 124 68
239 112 68
240 99 68
241 87 68
242 74 68
243 62 68
244 49 68
245 37 68
246 25 68
247 12 68
248 1 68
249 299 67
250 287 67
251 112 47
252 99 47
253 87 48
254 74 47
255 62 48
256 49 47
257 37 48
258 24 47
259 12 48
260 1 47
261 299 46
262 286 46
263 274 46
264 262 46
265 249 46
266 237 46
267 224 46
268 212 46
269 199 46
270 187 46
271 174 46
272 162 46
273 149 46
274 137 46
275 124 46
276 299 26
277 286 26
278 274 26
279 261 26
280 249 26
281 237 26
282 224 26
283 212 26
284 199 26
285 187 26
286 174 26
287 162 26
288 149 26
289 137 26
290 124 26
291 112 26
292 99 26
293 87 26
294 74 26
295 62 26
296 49 26
297 37 26
298 24 26
299 12 26
300 1 26
301 299 5
302 286 5
303 274 5
304 261 5
305 249 5
306 236 5
307 224 5
308 212 5
309 199 5
310 187 5
311 174 5
312 162 5
313 149 5
314 137 5
315 124 5
316 112 5
317 99 5
318 87 5
319 74 5
320 62 5
321 49 5
322 37 5
323 24 5
324 12 5
325 1 5

答案3

得分: 0

您的问题类似于https://stackoverflow.com/a/17116465/1510289,我相信类似的解决方案适用于您的情况,即在模糊处理后应用阈值,直到生成令人满意的轮廓,即边界。

以下是代码(在链接中提到),但参数已经根据您的特定输入图像进行了定制,以生成准确的轮廓。

import cv2

image = cv2.imread('input.jpg')
image2 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image2 = cv2.GaussianBlur(image2, ksize=(11,11), sigmaX=1, sigmaY=1)
cv2.imwrite('blurred.png', image2)
hello, image2 = cv2.threshold(image2, thresh=140, maxval=255, type=cv2.THRESH_BINARY)
cv2.imwrite('thresholded.png', image2)
contours, hier = cv2.findContours(
    image2,
    mode=cv2.RETR_EXTERNAL,
    method=cv2.CHAIN_APPROX_NONE)
print(f'Number of contours: {len(contours)}, hit any key to continue')
cv2.drawContours(
    image,
    contours=contours,
    contourIdx=-1,
    color=(0,255,0),
    thickness=1)
cv2.imwrite('augmented.png', image)
cv2.imshow('hello', image)
cv2.waitKey(-1)

blurred.png

STEM图像分析使用OpenCV

thresholded.png

STEM图像分析使用OpenCV

augmented.png

STEM图像分析使用OpenCV

英文:

Your question is similar to https://stackoverflow.com/a/17116465/1510289, and I believe a similar solution would apply in your case, namely to apply a threshold after the blur until you generate satisfactory contours, i.e. boundaries.

Below is the code (mentioned in the link), but with parameters customized for your specific input image to yield accurate contours.

import cv2

image = cv2.imread('input.jpg')
image2 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image2 = cv2.GaussianBlur(image2, ksize=(11,11), sigmaX=1, sigmaY=1)
cv2.imwrite('blurred.png', image2)
hello, image2 = cv2.threshold(image2, thresh=140, maxval=255, type=cv2.THRESH_BINARY)
cv2.imwrite('thresholded.png', image2)
contours, hier = cv2.findContours(
    image2,
    mode=cv2.RETR_EXTERNAL,
    method=cv2.CHAIN_APPROX_NONE)
print(f'Number of contours: {len(contours)}, hit any key to continue')
cv2.drawContours(
    image,
    contours=contours,
    contourIdx=-1,
    color=(0,255,0),
    thickness=1)
cv2.imwrite('augmented.png', image)
cv2.imshow('hello', image)
cv2.waitKey(-1)

blurred.png :

STEM图像分析使用OpenCV

thresholded.png :

STEM图像分析使用OpenCV

augmented.png :

STEM图像分析使用OpenCV

huangapple
  • 本文由 发表于 2023年3月7日 02:00:52
  • 转载请务必保留本文链接:https://go.coder-hub.com/75654277.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定