知识图谱和链接开放数据是相同的吗?

huangapple go评论64阅读模式
英文:

Is the Knowledge Graph and the Linked Open Data the same thing?

问题

我开始深入研究“知识图”这个主题,我有一种感觉,这与“链接开放数据”是相同的。我有一些问题 1) 如果是这样,为什么他们需要发明一个新概念。 2) 如果不是这样,有什么区别,本体论与此有什么关系? 3) 这一切与神经网络有什么关系?

希望这些问题的答案可以澄清这些概念并指明方向。

英文:

I started to dive into the topic "Knowledge Graph" and I get the feeling that this is the same as the "Linked Open Data". I have some questions 1) If so, why did they need to invent a new concept. 2) If not, what is the difference and what does ontology have to do with it? 3) And how all this is connected with neural networks?

I hope the answers to these questions can clarify the concepts and point the way.

答案1

得分: 3

Linked Open Data vs Knowledge Graphs

Linked Open Data (LOD)运动通常指的是使用语义网标准,即资源描述框架(RDF)来发布开放数据的概念。这些数据集通常由多方发布(研究人员、公司、个人),质量可能差异很大。尽管名字中包含“linked”(链接),但它们未必实际上都被链接在一起,尽管LOD运动鼓励重复使用标识符并链接到现有数据集,但这不是必需的,因此链接的质量和数量变化很大。请参见链接的LOD维基百科页面上的图表,了解各数据集的链接情况。

知识图谱(KGs)在广义上可以看作是LOD的再包装,但在实践中往往有一些不同之处。从业务角度来看,人们通常更容易为内部的知识图谱项目提出理由,而不是LOD项目。因为提出LOD项目不可避免地会引发关于是否泄露知识产权的问题。这导致了第一个差异,KGs通常不是开放的,它们是为特定组织或应用领域构建的,通常是专有的。其次,链接可能只是内部的,或者根据KG的不同,也可能链接到其他相关的LOD。

另一个主要的区别是,知识图谱不一定要使用语义网标准构建,完全可以(而且相当正常)使用带标签属性图(LPG)来构建知识图谱。根据知识图谱的用例,RDFLPG数据模型的选择可能会自然而然地根据将如何使用知识图谱而定。当然,如果用例多样化,也有一些系统(如Amazon Neptune)允许您结合两个世界。

本体有什么关系?

本体只是您的数据架构的正式表示。RDF在这方面有更加规范的标准,如RDFSOWL,但本体在传统数据库术语中大致相当于架构。

任何LOD或KG项目都将涉及某种本体或数据架构,因为如果您的数据没有一定的结构,它将很难构建任何有用的内容。

那神经网络呢?

神经网络是人工智能研究中的一个概念,与LOD和KGs没有直接的关联。

尽管如此,一个LOD或KG项目可以作为神经网络的训练数据的一部分,但这将取决于具体的用例。

英文:

Linked Open Data vs Knowledge Graphs

So the Linked Open Data (LOD) movement generally refers to the concept of publishing open data using semantic web standards i.e. Resource Description Framework (RDF). These datasets are typically published by multiple parties (researchers, corporations, individuals) and may vary in quality wildly. Despite the name they may not necessarily be linked at all, while the LOD movement encourages reusing identifiers and linking to pre-existing datasets this is not a requirement so the quality and quantity of linkages varies a lot. See the diagram on the linked LOD wikipedia page for an overview of which datasets link to where.

Knowledge Graphs (KGs) are broadly speaking a rebranding of LOD but in practise tend to have several differences. From a business perspective it's often much easier for people to make the case for an internal KG project than a LOD project. As proposing a LOD project inevitably leads to questions about whether you're giving away your intellectual property. This leads to the first difference, KGs typically aren't open, they are built for a specific organisation or application domain and usually kept propriety. Secondly, the linking may, depending on the KG, only be internal to that KG, or it may link out to relevant LOD elsewhere.

The other major difference is that a KG need not be built with semantic web standards, its perfectly possible (and quite normal) to build a KG using Labelled Property Graphs (LPG). Depending on the use case for the KG the choice of RDF vs LPG data model may fall out naturally from how it will be used. Of course there are systems like Amazon Neptune that let you combine both worlds if the use cases are varied.

What's Ontology got to do with it?

Ontologies are just formal representations of your data schema. RDF has more formalised standards around this, such as RDFS and OWL, but an ontology is broadly equivalent to a schema in traditional database terminology.

Any LOD or KG project is going to involve some kind of Ontology, or Data Schema, as without that they tend to be fairly unusable i.e. if your data doesn't have some structure to it it's hard to build anything useful atop it.

And what about neural networks?

Neural Networks are a concept from Artificial Intelligence research and doesn't really have any direct connection to LOD and KGs.

That being said a LOD or KG project could be used as part of the training data for a neural network but what that looks like it would be very use case specific.

huangapple
  • 本文由 发表于 2023年3月7日 01:26:53
  • 转载请务必保留本文链接:https://go.coder-hub.com/75653972.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定