卡尔曼滤波器的动态偏移矩阵

huangapple go评论57阅读模式
英文:

Kalman Filter's Dynamic Shift matrix

问题

卡尔曼滤波器(KF)在预测步骤中使用所谓的动态转移矩阵。该矩阵有时被称为演变或传播矩阵,用DM标记:

$ \mu_t = M_t \mu_{t-1} $

$ \Sigma_t = M_t \mu_{t-1} M_t' + Q_t $

在我了解的许多实现中,M通常只是一个单位矩阵。是否可以提供一个示例和解释,说明这个矩阵在更复杂的情况下有实际意义?

据说这个矩阵将前一时间步骤k-1的状态与当前时间步骤k的状态关联起来,在没有驱动函数或过程噪声的情况下,它可以在每个时间步骤中发生变化(参见Welch & Bishop 2001)。

英文:

Kalman Filter (KF) uses a so-called Dynamic Shift matrix in the forecast step. The matrix is sometimes called Evolution or Propagator matrix, and is marked with D or M:

$ \mu_t = M_t \mu_{t-1} $

$ \Sigma_t = M_t \mu_{t-1} M_t' + Q_t $

In many implementations that I know about, M is just an Identity matrix. Can anyone provide an example and explanation of when that matrix is meaningfully more complex?

It is said that this matrix relates the state at the previous time step k – 1 to the state at the current step, k, in the absence of either a driving function or process noise, as well as that it can change with each time step (see Welch & Bishop 2001).

答案1

得分: 1

这是一个很好的视频,用来解释位移操作矩阵的含义。希望这能澄清你的疑惑。由Khaisare教授制作的视频

卡尔曼滤波器的先验状态估计也可以通过物理信息的状态空间模型来实现。关于这点,你可以参考书籍:Grewal和Andrews编写的《卡尔曼滤波》。

英文:

Here is a good video to explain what the shift operator matrix means. Hopefully that clarifies your doubt.Video by Professor Khaisare

Kalman Filter a priori state estimates can also be made by physics informed State Space models. For that you can refer to the book: Kalman Filtering by Grewal and Andrews.

huangapple
  • 本文由 发表于 2023年3月1日 16:33:17
  • 转载请务必保留本文链接:https://go.coder-hub.com/75601232.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定