寻找在R中执行此for循环的更有效方法

huangapple go评论69阅读模式
英文:

Looking for a more efficient way of doing this for-loop in R

问题

我的数据集有超过300万条记录,所以这个循环花费了很长时间。

我想要创建一个bout_len_tracker变量,用于计算连续的行数,其中相同的主题(SUBJECT)具有VECTORMAGNITUDECOUNTS >= 1853。

sub_study$bout_len_tracker <- 0

for (i in 2:nrow(sub_study)) {
  if ((sub_study$VECTORMAGNITUDECOUNTS[i] >= 1853) & (sub_study$SUBJECT[i] == sub_study$SUBJECT[i-1]))
    sub_study$bout_len_tracker[i] <- sub_study$bout_len_tracker[i-1] + 1
}
英文:

My data set has over 3 million records so this loop is taking forever.

I want to create a bout_len_tracker variable that counts how many consecutive rows for the same SUBJECT have VECTORMAGNITUDECOUNTS >= 1853.

sub_study$bout_len_tracker &lt;- 0

for ( i in 2:nrow(sub_study) ) { 
  if ( (sub_study$VECTORMAGNITUDECOUNTS[i] &gt;= 1853) &amp; (sub_study$SUBJECT[i] == sub_study$SUBJECT[i-1]) ) 
    sub_study$bout_len_tracker[i] &lt;-  sub_study$bout_len_tracker[i-1]+1 
  }

答案1

得分: 1

你可以将 VECTORMAGNITUDECOUNTS &gt;= 1853cumsum 放入 ave 中。这里有一个示例:

dat$len &lt;- with(dat, ave(VECTORMAGNITUDECOUNTS &gt;= 1853, id, FUN=cumsum))
dat
#    id t  VECTORMAGNITUDECOUNTS len
# 1   1 1 17 1
# 2   1 2 18 2
# 3   1 3  5 2
# 4   2 1  5 0
# 5   2 2 17 1
# 6   2 3 14 2
# 7   3 1  1 0
# 8   3 2 15 1
# 9   3 3 20 2
# 10  4 1 10 1
# 11  4 2  7 1
# 12  4 3 18 2
# 13  5 1  4 0
# 14  5 2  4 0
# 15  5 3 15 1

如果 n 中有 NA 值,

dat$n[sample.int(nrow(dat), nrow(dat)*.2)] &lt;- NA

你可以将其扩展为:

dat$len &lt;- with(dat, ave(VECTORMAGNITUDECOUNTS &gt;= 1853, id, FUN=\(x) cumsum(replace(x, is.na(x), 0))))

数据:

dat &lt;- structure(list(id = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
4L, 4L, 5L, 5L, 5L), t = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 
1L, 2L, 3L, 1L, 2L, 3L), n = c(17L, 18L, 5L, 5L, 17L, 14L, 1L, 
15L, 20L, 10L, 7L, 18L, 4L, 4L, 15L)), out.attrs = list(dim = c(id = 5L, 
t = 3L), dimnames = list(id = c("id=1", "id=2", "id=3", "id=4", 
"id=5"), t = c("t=1", "t=2", "t=3"))), row.names = c(NA, -15L
), class = "data.frame")
英文:

You could put cumsum of VECTORMAGNITUDECOUNTS &gt;= 1853 in ave. Here an example:

dat$len &lt;- with(dat, ave(n &gt;= 10, id, FUN=cumsum))
dat
#    id t  n len
# 1   1 1 17   1
# 2   1 2 18   2
# 3   1 3  5   2
# 4   2 1  5   0
# 5   2 2 17   1
# 6   2 3 14   2
# 7   3 1  1   0
# 8   3 2 15   1
# 9   3 3 20   2
# 10  4 1 10   1
# 11  4 2  7   1
# 12  4 3 18   2
# 13  5 1  4   0
# 14  5 2  4   0
# 15  5 3 15   1

If there are NAs in n,

dat$n[sample.int(nrow(dat), nrow(dat)*.2)] &lt;- NA

you can expand this to:

dat$len &lt;- with(dat, ave(n &gt;= 10, id, FUN=\(x) cumsum(replace(x, is.na(x), 0))))

Data:

dat &lt;- structure(list(id = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
4L, 4L, 5L, 5L, 5L), t = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 
1L, 2L, 3L, 1L, 2L, 3L), n = c(17L, 18L, 5L, 5L, 17L, 14L, 1L, 
15L, 20L, 10L, 7L, 18L, 4L, 4L, 15L)), out.attrs = list(dim = c(id = 5L, 
t = 3L), dimnames = list(id = c(&quot;id=1&quot;, &quot;id=2&quot;, &quot;id=3&quot;, &quot;id=4&quot;, 
&quot;id=5&quot;), t = c(&quot;t=1&quot;, &quot;t=2&quot;, &quot;t=3&quot;))), row.names = c(NA, -15L
), class = &quot;data.frame&quot;)

答案2

得分: 1

以下是代码的翻译部分:

library(data.table)

setDT(dat)[, tracker := (n >= 10) * rowid(n >= 10), id][]

如果需要进一步的帮助,请随时提问。

英文:

library(data.table)

setDT(dat)[,tracker:= (n&gt;=10) * rowid(n &gt;= 10),id][]

     id t  n tracker
 1:  1 1 17       1
 2:  1 2 18       2
 3:  1 3  5       0
 4:  2 1  5       0
 5:  2 2 17       1
 6:  2 3 14       2
 7:  3 1  1       0
 8:  3 2 15       1
 9:  3 3 20       2
10:  4 1 10       1
11:  4 2  7       0
12:  4 3 18       2
13:  5 1  4       0
14:  5 2  4       0
15:  5 3 15       1

huangapple
  • 本文由 发表于 2023年3月1日 13:38:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/75599942.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定