Unable to use GPU in custom Docker container built on top of nvidia/cuda image despite –gpus all flag

huangapple go评论78阅读模式
英文:

Unable to use GPU in custom Docker container built on top of nvidia/cuda image despite --gpus all flag

问题

我正在尝试运行一个需要访问我的主机NVIDIA GPU的Docker容器,使用--gpus all标志来启用GPU访问。当我使用nvidia-smi命令运行容器时,我可以看到一个活动的GPU,表明容器可以访问GPU。然而,当我尝试在容器内简单地运行TensorFlow、PyTorch或ONNX Runtime时,这些库似乎无法检测或使用GPU。

具体来说,当我使用以下命令运行容器时,我只看到CPUExecutionProvider,而没有看到ONNX Runtime中的CUDAExecutionProvider

sudo docker run --gpus all mycontainer:latest

然而,当我使用nvidia-smi命令运行相同的容器时,我会得到活动GPU的提示:

sudo docker run --gpus all mycontainer:latest nvidia-smi

这是活动GPU的提示:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 495.29.05    Driver Version: 495.29.05    CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------|
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| N/A   44C    P0    27W /  N/A |     10MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

这是我使用的Dockerfile,我用它构建了mycontainer

FROM nvidia/cuda:11.5.0-base-ubuntu20.04

WORKDIR /home

COPY requirements.txt /home/requirements.txt

# Add the deadsnakes PPA for Python 3.10
RUN apt-get update && \
    apt-get install -y software-properties-common libgl1-mesa-glx cmake protobuf-compiler && \
    add-apt-repository ppa:deadsnakes/ppa && \
    apt-get update

# Install Python 3.10 and dev packages
RUN apt-get update && \
    apt-get install -y python3.10 python3.10-dev python3-pip  && \
    rm -rf /var/lib/apt/lists/*

# Install virtualenv
RUN pip3 install virtualenv

# Create a virtual environment with Python 3.10
RUN virtualenv -p python3.10 venv

# Activate the virtual environment
ENV PATH="/home/venv/bin:$PATH"

# Install Python dependencies
RUN pip3 install --upgrade pip \
    && pip3 install --default-timeout=10000000 torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 \
    && pip3 install --default-timeout=10000000 -r requirements.txt

# Copy files
COPY /src /home/src

# Set the PYTHONPATH and LD_LIBRARY_PATH environment variable to include the CUDA libraries
ENV PYTHONPATH=/usr/local/cuda-11.5/lib64
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.5/lib64

# Set the CUDA_PATH and CUDA_HOME environment variable to point to the CUDA installation directory
ENV CUDA_PATH=/usr/local/cuda-11.5
ENV CUDA_HOME=/usr/local/cuda-11.5

# Set the default command
CMD ["sh", "-c", ". /home/venv/bin/activate && python main.py $@"]

我已经确认我使用的TensorFlow、PyTorch和ONNX Runtime的版本与我系统上安装的CUDA版本兼容。我还确保正确设置了LD_LIBRARY_PATH环境变量以包括CUDA库的路径。最后,我确保在启动容器时包括了--gpus all标志,并正确配置了NVIDIA Docker运行时和设备插件。尽管采取了这些步骤,但我仍然无法在使用TensorFlow、PyTorch或ONNX Runtime时访问容器内的GPU。可能是什么原因导致了这个问题,我该如何解决它?如果需要更多信息,请告诉我。

英文:

I am trying to run a Docker container that requires access to my host NVIDIA GPU, using the --gpus all flag to enable GPU access. When I run the container with the nvidia-smi command, I can see an active GPU, indicating that the container has access to the GPU. However, when I simply try to run TensorFlow, PyTorch, or ONNX Runtime inside the container, these libraries do not seem to be able to detect or use the GPU.

Specifically, when I run the container with the following command, I see only the CPUExecutionProvider, but not the CUDAExecutionProvider in ONNX Runtime:

sudo docker run --gpus all mycontainer:latest

However, when I run the same container with the nvidia-smi command, I get the active GPU prompt:

sudo docker run --gpus all mycontainer:latest nvidia-smi

This is the active GPU prompt:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 495.29.05    Driver Version: 495.29.05    CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| N/A   44C    P0    27W /  N/A |     10MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

And this is the Dockerfile, I built mycontainer with:

FROM nvidia/cuda:11.5.0-base-ubuntu20.04

WORKDIR /home

COPY requirements.txt /home/requirements.txt

# Add the deadsnakes PPA for Python 3.10
RUN apt-get update && \
    apt-get install -y software-properties-common libgl1-mesa-glx cmake protobuf-compiler && \
    add-apt-repository ppa:deadsnakes/ppa && \
    apt-get update

# Install Python 3.10 and dev packages
RUN apt-get update && \
    apt-get install -y python3.10 python3.10-dev python3-pip  && \
    rm -rf /var/lib/apt/lists/*

# Install virtualenv
RUN pip3 install virtualenv

# Create a virtual environment with Python 3.10
RUN virtualenv -p python3.10 venv

# Activate the virtual environment
ENV PATH="/home/venv/bin:$PATH"

# Install Python dependencies
RUN pip3 install --upgrade pip \
    && pip3 install --default-timeout=10000000 torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 \
    && pip3 install --default-timeout=10000000 -r requirements.txt

# Copy files
COPY /src /home/src

# Set the PYTHONPATH and LD_LIBRARY_PATH environment variable to include the CUDA libraries
ENV PYTHONPATH=/usr/local/cuda-11.5/lib64
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.5/lib64

# Set the CUDA_PATH and CUDA_HOME environment variable to point to the CUDA installation directory
ENV CUDA_PATH=/usr/local/cuda-11.5
ENV CUDA_HOME=/usr/local/cuda-11.5

# Set the default command
CMD ["sh", "-c", ". /home/venv/bin/activate && python main.py $@"]

I have checked that the version of TensorFlow, PyTorch, and ONNX Runtime that I am using is compatible with the version of CUDA installed on my system. I have also made sure to set the LD_LIBRARY_PATH environment variable correctly to include the path to the CUDA libraries. Finally, I have made sure to include the --gpus all flag when starting the container, and to properly configure the NVIDIA Docker runtime and device plugin. Despite these steps, I am still unable to access the GPU inside the container when using TensorFlow, PyTorch, or ONNX Runtime. What could be causing this issue, and how can I resolve it? Please let me know, if you need further information.

答案1

得分: 3

你应该安装 onnxruntime-gpu 以获取 CUDAExecutionProvider

docker run --gpus all -it nvcr.io/nvidia/pytorch:22.12-py3 bash
pip install onnxruntime-gpu
python3 -c "import onnxruntime as rt; print(rt.get_device())"
GPU
英文:

You should install onnxruntime-gpu to get CUDAExecutionProvider.

docker run --gpus all -it nvcr.io/nvidia/pytorch:22.12-py3 bash
pip install onnxruntime-gpu
python3 -c "import onnxruntime as rt; print(rt.get_device())"
GPU

huangapple
  • 本文由 发表于 2023年3月1日 11:15:45
  • 转载请务必保留本文链接:https://go.coder-hub.com/75599261.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定