根据绝对差异筛选数据框。

huangapple go评论70阅读模式
英文:

Filter data frame based on absolute difference

问题

以下是你提供的代码的翻译部分:

我有以下数据框

```python
import pandas as pd
d1 = {'id': ["car", "car", "car", "plane", "plane", "car"], 'value': [1, 1.2, 5, 6, 1.3, 0.8]}
df1 = pd.DataFrame(data=d1)
df1
    id      value
0	car	    1.0
1	car	    1.2
2	car	    5.0
3	plane	6.0
4	plane	1.3
5	car 	0.8

我想要过滤掉行,如果值的所有差异都小于1,那么我会得到以下数据框:

d2 = {'id': ["car", "car", "car"], 'value': [1, 1.2, 0.8]}
df2 = pd.DataFrame(data=d2)
df2

    id      value
0	car	    1.0
1	car	    1.2
5	car 	0.8

d3 = {'id': ["car", "plane", "plane"], 'value': [5, 6, 1.3]}
df3 = pd.DataFrame(data=d3)
df3

2	car	    5.0
3	plane	6.0
4	plane	1.3

我尝试了以下函数来将所有值保存在一个临时列表中,但它没有正常工作:

unique_list = []
def unique_2(df):
    for id_1, value_1 in zip(df["id"], df["value"]):
        for id_2, value_2 in zip(df["id"], df["value"]):
            if id_1 == id_2:
                if abs(value_1-value_2) > 0.01: 
                    x = True
                    unique_list.append(x)
                else:
                    x = False
                    unique_list.append(x)
            else:
                pass

<details>
<summary>英文:</summary>

I have the following data frame:

```python
import pandas as pd
d1 = {&#39;id&#39;: [&quot;car&quot;, &quot;car&quot;, &quot;car&quot;, &quot;plane&quot;, &quot;plane&quot;, &quot;car&quot;], &#39;value&#39;: [1, 1.2, 5, 6, 1.3, 0.8]}
df1 = pd.DataFrame(data=d1)
df1
    id      value
0	car	    1.0
1	car	    1.2
2	car	    5.0
3	plane	6.0
4	plane	1.3
5	car 	0.8

I want to filter rows out, if all differences for a value are smaller than 1, so I get the following data frames:

d2 = {&#39;id&#39;: [&quot;car&quot;, &quot;car&quot;, &quot;car&quot;], &#39;value&#39;: [1, 1.2, 0.8]}
df2 = pd.DataFrame(data=d2)
df2

    id      value
0	car	    1.0
1	car	    1.2
5	car 	0.8

and

d3 = {&#39;id&#39;: [&quot;car&quot;, &quot;plane&quot;, &quot;plane&quot;], &#39;value&#39;: [5, 6, 1.3]}
df3 = pd.DataFrame(data=d3)
df3

2	car	    5.0
3	plane	6.0
4	plane	1.3

I tried the following function to save all values in a temporary list, but it did not work properly:

unique_list = []
def unique_2(df):
    for id_1, value_1 in zip(df[&quot;id&quot;], df[&quot;value&quot;]):
        for id_2, value_2 in zip(df[&quot;id&quot;], df[&quot;value&quot;]):
            if id_1 == id_2:
                if abs(value_1-value_2) &gt; 0.01: 
                    x = True
                    unique_list.append(x)
                else:
                    x = False
                    unique_list.append(x)
            else:
                pass

答案1

得分: 2

以下是代码部分的中文翻译:

你可以使用自定义的 groupby 来拆分数据:

grp = df1['value'].sort_values().diff().gt(1).cumsum()

out = [g for _, g in df1.groupby(grp)]

请注意,不清楚你是否想要使用 <1 还是 ≤1 作为阈值。如果你想要 <1,请将 gt(1) 替换为 ge(1)

输出:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0,
       id  value
 4  plane   16.0]

中间的 grp

5    0
0    0
1    0
2    1
3    1
4    2
Name: value, dtype: int64

将单独的行分组在一起

如果你有不同的解释,如果你想将单独的行(即没有其他行与其相隔不超过1)分组在一起,可以使用以下代码:

grp = df1['value'].sort_values().diff().ge(1).cumsum()
grp = grp.mask(df1.groupby(grp).transform('size').eq(1), 'alone')

out = [g for _, g in df1.groupby(grp)]

请注意,我们只将相隔不超过1的行分组在一起。

输出:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0
 4  plane   16.0]

中间的 grp

5        0
0        0
1        0
2    alone
3    alone
4    alone
Name: value, dtype: object
按ID分组:
grp = df1.sort_values(by='value').groupby('id', group_keys=False)['value'].apply(lambda g: g.diff().gt(1).cumsum())
grp = grp.mask(df1.groupby(['id', grp]).transform('size').eq(1), 'alone')

out = [g for _, g in df1.groupby(grp)]

输出:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0
 4  plane    1.3]
英文:

You can use a custom groupby to split the data:

grp = df1[&#39;value&#39;].sort_values().diff().gt(1).cumsum()

out = [g for _, g in df1.groupby(grp)]

Note that it wasn't clear whether you want to use &lt;1 or ≤1 as threshold. If you want &lt;1 replace gt(1) by ge(1).

Output:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0,
       id  value
 4  plane   16.0]

Intermediate grp:

5    0
0    0
1    0
2    1
3    1
4    2
Name: value, dtype: int64

grouping loners together

Assuming a different interpretation, if you want to groups loners (=rows that have no other row within 1) together, use:

grp = df1[&#39;value&#39;].sort_values().diff().ge(1).cumsum()
grp = grp.mask(df1.groupby(grp).transform(&#39;size&#39;).eq(1), &#39;alone&#39;)

out = [g for _, g in df1.groupby(grp)]

Note that we're only grouping rows that are less than 1 apart

Output:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0
 4  plane   16.0]

Intermediate grp:

5        0
0        0
1        0
2    alone
3    alone
4    alone
Name: value, dtype: object
by ID:
grp = df1.sort_values(by=&#39;value&#39;).groupby(&#39;id&#39;, group_keys=False)[&#39;value&#39;].apply(lambda g: g.diff().gt(1).cumsum())
grp = grp.mask(df1.groupby([&#39;id&#39;, grp]).transform(&#39;size&#39;).eq(1), &#39;alone&#39;)

out = [g for _, g in df1.groupby(grp)]

Output:

[    id  value
 0  car    1.0
 1  car    1.2
 5  car    0.8,
       id  value
 2    car    5.0
 3  plane    6.0
 4  plane    1.3]

答案2

得分: 1

以下是代码部分的翻译:

# 使用numpy广播获取列`value`的差异,获取绝对值,与1进行比较,将对角线上的值设置为False:
a = df1['value'].to_numpy()

m = np.abs(a - a[:, None]) < 1
np.fill_diagonal(m, False)
print (m)

[[False  True False False False  True]
 [ True False False False False  True]
 [False False False False False False]
 [False False False False False False]
 [False False False False False False]
 [ True  True False False False False]]

# 最后根据每行至少有一个`True`来过滤行:
mask = np.any(m, axis=1)
df11, df22 = df1[mask], df1[~mask]
print (df11)
    id  value
0  car    1.0
1  car    1.2
5  car    0.8

print (df22)
      id  value
2    car    5.0
3  plane    6.0
4  plane   16.0

希望这些翻译对您有所帮助。如果您有其他问题或需要进一步的翻译,请随时告诉我。

英文:

Het differencies with column value with numpy broadcasting, get absolute values, comapre less like 1 with set False to diagonal:

a = df1[&#39;value&#39;].to_numpy()

m = np.abs(a - a[:, None]) &lt; 1
np.fill_diagonal(m, False)
print (m)

[[False  True False False False  True]
 [ True False False False False  True]
 [False False False False False False]
 [False False False False False False]
 [False False False False False False]
 [ True  True False False False False]]

Last fitler rows with at least one True per rows:

mask = np.any(m, axis=1)
df11, df22 = df1[mask], df1[~mask]
print (df11)
    id  value
0  car    1.0
1  car    1.2
5  car    0.8

print (df22)
      id  value
2    car    5.0
3  plane    6.0
4  plane   16.0

答案3

得分: 1

我无法提供解决方案,因为逻辑不清楚:

我想要过滤行,如果一个值的所有差异都小于1

def debug(sr):
   print(f'[{sr.name}]')
   arr = sr.values
   val = np.abs(sr.values - sr.values[:, None])
   print(pd.DataFrame(val, sr.tolist(), sr.tolist()))
   print()
   return np.max(val)

df1.groupby('id')['value'].transform(debug)

输出:

[car]
     1.0  1.2  5.0  0.8
1.0  0.0  0.2  4.0  0.2  # 一个差异 > 1
1.2  0.2  0.0  3.8  0.4  # 一个差异 > 1
5.0  4.0  3.8  0.0  4.2  # 3个差异 > 1
0.8  0.2  0.4  4.2  0.0  # 1个差异 > 1

[plane]
      6.0   16.0
6.0    0.0  10.0
16.0  10.0   0.0

0     4.2  # car组的差异 > 1
1     4.2
2     4.2
3    10.0  # plane组的差异 > 1
4    10.0
5     4.2
Name: value, dtype: float64

如您所见,对于每种组合,至少有一个值的差异大于1。因此,对于给定的组,您无法将其分成两部分。您只能将整个组设置为两个列表中的一个:

  • 组1:所有绝对差异小于等于1
  • 组2:至少有一个差异大于1
英文:

I have no solution because the logic is unclear:

> I want to filter rows out, if all differences for a value are smaller than 1

def debug(sr):
   print(f&#39;[{sr.name}]&#39;)
   arr = sr.values
   val = np.abs(sr.values - sr.values[:, None])
   print(pd.DataFrame(val, sr.tolist(), sr.tolist()))
   print()
   return np.max(val)

df1.groupby(&#39;id&#39;)[&#39;value&#39;].transform(debug)

Output:

[car]
     1.0  1.2  5.0  0.8
1.0  0.0  0.2  4.0  0.2  # one difference &gt; 1
1.2  0.2  0.0  3.8  0.4  # one difference &gt; 1
5.0  4.0  3.8  0.0  4.2  # 3 differences &gt; 1
0.8  0.2  0.4  4.2  0.0  # 1 difference &gt; 1

[plane]
      6.0   16.0
6.0    0.0  10.0
16.0  10.0   0.0

0     4.2  # car group difference &gt; 1
1     4.2
2     4.2
3    10.0  # plane group difference &gt; 1
4    10.0
5     4.2
Name: value, dtype: float64

As you can see, for each combination, there is at least one value whose difference is greater than 1. So for a given group, you can't split it into two parts. You can only set the whole group to one of the two lists:

  • group1: all absolute differences is lower or equals than 1
  • group2: at least one difference is greater than 1

huangapple
  • 本文由 发表于 2023年2月27日 18:37:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/75579387.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定