如何使用rvest计算图标数量?

huangapple go评论86阅读模式
英文:

How do I count icons using rvest?

问题

我想为此页面上的每个玩家计算总星星数:https://cbgm.news/stats/CONN_Ratings.html

以下是我的rvest代码:

  1. library(tidyverse)
  2. library(rvest)
  3. url <- "https://cbgm.news/stats/CONN_Ratings.html"
  4. scrape <- url %>%
  5. read_html() %>%
  6. html_nodes("td:nth-child(19)")
  7. scrape

这返回:

  1. {xml_nodeset (14)}
  2. [1] <td>
  3. <i class="star yellow icon"></i><i class="star yellow ic ...
  4. [2] <td>
  5. <i class="star yellow icon"></i><i class="star yellow ic ...
  6. [3] <td>
  7. <i class="star yellow icon"></i><i class="star yellow ic ...
  8. [4] <td>
  9. <i class="star yellow icon"></i><i class="star yellow ic ...
  10. [5] <td>
  11. <i class="star yellow icon"></i><i class="star yellow ic ...
  12. [6] <td>
  13. <i class="star yellow icon"></i><i class="star yellow ic ...
  14. [7] <td>
  15. <i class="star yellow icon"></i><i class="star yellow ic ...
  16. [8] <td>
  17. <i class="star yellow icon"></i><i class="star yellow ic ...
  18. [9] <td>
  19. <i class="star yellow icon"></i><i class="star yellow ic ...
  20. [10] <td>
  21. <i class="star yellow icon"></i><i class="star yellow ic ...
  22. [11] <td>
  23. <i class="star yellow icon"></i><i class="star yellow ic ...
  24. [12] <td>
  25. <i class="star yellow icon"></i><i class="star yellow ic ...
  26. [13] <td>
  27. <i class="star yellow icon"></i><i class="star yellow ic ...
  28. [14] <td><i class="star half yellow icon"></i></td>

如何将xml_nodeset转换为允许进行突变和计算星星图标数量的数据框/表?

感谢您对这个问题的任何帮助!

英文:

I want to count the number of overall stars for each player on this page: https://cbgm.news/stats/CONN_Ratings.html

Here's my rvest code:

  1. library(tidyverse)
  2. library(rvest)
  3. url &lt;- &quot;https://cbgm.news/stats/CONN_Ratings.html&quot;
  4. scrape &lt;- url %&gt;%
  5. read_html() %&gt;%
  6. html_nodes(&quot;td:nth-child(19)&quot;)
  7. scrape

This returns:

  1. {xml_nodeset (14)}
  2. [1] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  3. [2] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  4. [3] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  5. [4] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  6. [5] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  7. [6] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  8. [7] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  9. [8] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  10. [9] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  11. [10] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  12. [11] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  13. [12] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  14. [13] &lt;td&gt;\n&lt;i class=&quot;star yellow icon&quot;&gt;&lt;/i&gt;&lt;i class=&quot;star yellow ic ...
  15. [14] &lt;td&gt;&lt;i class=&quot;star half yellow icon&quot;&gt;&lt;/i&gt;&lt;/td&gt;\n

How do I convert the xml_nodeset to a df/tibble that allows for mutating and counting the number of star icons?

I appreciate any help with this puzzle!

答案1

得分: 0

以下是代码的翻译部分:

  1. 你可以创建一个小函数,用于查找星星(全星和半星)并返回其数量。然后使用`mutate()`来添加一个名为`stars`的新列,该列保存该函数应用于`scrape`中每个元素的结果。
  2. ```R
  3. f <- function(s) {
  4. return(str_count(as.character(s), "star yellow") + str_count(as.character(s), "star half")/2)
  5. }

现在,使用rvest::html_table()以及mutate()函数:

  1. rvest::html_table(url %>% read_html)[[1]] %>%
  2. mutate(OVERALL = sapply(scrape, f))

输出:

  1. NUM POS PLAYER FGI FGJ FT SCR PAS HDL ORB DRB DEF BLK STL DRFL DI IQ ATH OVERALL
  2. <int> <chr> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <dbl>
  3. 1 1 PG Marek 36 76 54 73 81 50 66 72 65 72 75 21 53 42 58 4
  4. 2 14 PG Brian 10 90 72 50 74 32 71 71 69 53 82 32 65 57 91 3.5
  5. 3 15 PG Morris 25 85 56 71 53 60 10 53 76 10 53 28 72 47 76 2
  6. 4 12 SG Ryan M 31 78 96 74 46 38 50 43 71 46 40 35 61 45 75 3.5
  7. 5 21 SG Lenny 10 90 67 50 60 49 56 71 58 60 66 39 56 38 69 3
  8. 6 5 SG Fred M 10 83 61 71 30 23 10 78 63 10 16 39 61 38 87 2
  9. 7 23 SF Will B 35 73 58 74 66 38 70 72 52 60 74 21 42 46 30 4
  10. 8 51 SF Lyly L 51 76 83 84 75 32 66 81 61 70 85 24 52 47 60 5
  11. 9 42 SF Joe Ch 58 50 80 70 56 39 53 53 78 10 53 21 54 52 78 2
  12. 10 40 PF Richar 63 50 41 72 71 32 79 78 65 71 71 54 39 43 72 4
  13. 11 30 PF Ammer 56 54 81 63 60 23 72 72 78 66 56 35 50 54 58 3.5
  14. 12 54 C Xavier 100 33 36 100 76 16 96 91 76 100 87 61 28 41 73 5
  15. 13 45 C Brad L 91 38 56 60 63 19 75 76 78 82 70 58 30 28 68 4
  16. 14 10 C Ed Str 68 40 45 10 10 10 13 10 10 10 10 24 17 16 10 0.5
  1. <details>
  2. <summary>英文:</summary>
  3. You could make a small function that looks for stars (full and half) and returns the number. Then use `mutate()` to add a new column `stars` which holds the application of that function to each element of `scrape`.

f <- function(s) {
return(str_count(as.character(s), "star yellow") + str_count(as.character(s), "star half")/2)
}

  1. Now, use `rvest::html_table()` along with `mutate()`

rvest::html_table(url %>% read_html)[[1]] %>%
mutate(OVERALL = sapply(scrape,f))

  1. Output:
  1. NUM POS PLAYER FGI FGJ FT SCR PAS HDL ORB DRB DEF BLK STL DRFL DI IQ ATH OVERALL

<int> <chr> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <dbl>
1 1 PG Marek … 36 76 54 73 81 50 66 72 65 72 75 21 53 42 58 4
2 14 PG Brian … 10 90 72 50 74 32 71 71 69 53 82 32 65 57 91 3.5
3 15 PG Morris… 25 85 56 71 53 60 10 53 76 10 53 28 72 47 76 2
4 12 SG Ryan M… 31 78 96 74 46 38 50 43 71 46 40 35 61 45 75 3.5
5 21 SG Lenny … 10 90 67 50 60 49 56 71 58 60 66 39 56 38 69 3
6 5 SG Fred M… 10 83 61 71 30 23 10 78 63 10 16 39 61 38 87 2
7 23 SF Will B… 35 73 58 74 66 38 70 72 52 60 74 21 42 46 30 4
8 51 SF Lyly L… 51 76 83 84 75 32 66 81 61 70 85 24 52 47 60 5
9 42 SF Joe Ch… 58 50 80 70 56 39 53 53 78 10 53 21 54 52 78 2
10 40 PF Richar… 63 50 41 72 71 32 79 78 65 71 71 54 39 43 72 4
11 30 PF Ammer … 56 54 81 63 60 23 72 72 78 66 56 35 50 54 58 3.5
12 54 C Xavier… 100 33 36 100 76 16 96 91 76 100 87 61 28 41 73 5
13 45 C Brad L… 91 38 56 60 63 19 75 76 78 82 70 58 30 28 68 4
14 10 C Ed Str… 68 40 45 10 10 10 13 10 10 10 10 24 17 16 10 0.5

  1. </details>

huangapple
  • 本文由 发表于 2023年2月27日 02:17:30
  • 转载请务必保留本文链接:https://go.coder-hub.com/75574087.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定