如何将pandas中的季度数据字符串列转换为可绘制的内容。

huangapple go评论73阅读模式
英文:

How to turn a string column of quarterly data in pandas into sompething I can plot

问题

我有一个看起来像这样的数据框:

错误:

	Quarter	        London	    UK	        NaN
6	1992年3月至5月	0.12305	    0.098332	NaN
7	1992年4月至6月	0.123895	0.097854	NaN
8	1992年5月至7月	0.124076	0.098878	NaN
9	1992年6月至8月	0.127796	0.099365	NaN
10	1992年7月至9月	0.126064	0.099371	NaN

我尝试使用Quarter列上的PeriodIndex以便绘制数据,但它一直给我报错。我可以尝试下一步做什么?

我尝试使用的代码是:

quarter_column = df.Quarter
# 创建PeriodIndex
periods = pd.PeriodIndex(quarter_column, freq='Q-MAR')
pd.DataFrame(df, index=periods)

报错信息如下:

DateParseError: 未知的日期时间字符串格式,无法解析:1992年3月至5月
英文:

I have a dataframe that looks like this:

oops:

	Quarter	        London	    UK	        NaN
6	Mar-May 1992	0.12305	    0.098332	NaN
7	Apr-Jun 1992	0.123895	0.097854	NaN
8	May-Jul 1992	0.124076	0.098878	NaN
9	Jun-Aug 1992	0.127796	0.099365	NaN
10	Jul-Sep 1992	0.126064	0.099371	NaN

I've tried to use the PeriodIndex on quarter so I can plot the data but it just keeps giving me errors. What can I try next?

The code that I was trying to use:

quarter_column = df.Quarter
# create PeriodIndex
periods = pd.PeriodIndex(quarter_column, freq='Q-Mar')
pd.DataFrame(df, index=periods)

The error was:

DateParseError: Unknown datetime string format, unable to parse: MAR-MAY 1992

答案1

得分: 1

显然PeriodIndex没有接受该格式字符串。您的季度也有重叠,这使得定义PeriodIndex变得具有挑战性。

不过,您是否需要将其转换为PeriodIndex?如果您的数据已经按顺序排序并以连续方式索引(6、7、8、9...),您可以使用以下代码:

# 将数据绘制在数据框的索引上。
# 例如,伦敦系列实际上绘制为:
# (6, 0.12305), (7, 0.123895), (8, 0.124076), ...
ax = df[["London", "UK"]].plot(marker="o")
# 将x轴标记与索引相同,即:6, 7, 8...,而不是6, 6.5, 7, 7.5...
ax.xaxis.set_ticks(df.index)
# 标记刻度
ax.xaxis.set_ticklabels(df["Quarter"])

结果:

如何将pandas中的季度数据字符串列转换为可绘制的内容。

英文:

Obviously PeriodIndex didn't accept that format string. Your quarters also overlap which makes it challenging to define a PeriodIndex.

However, do you need to convert it to PeriodIndex? If your data is already sorted and indexed sequentially (6, 7, 8, 9...), you can use the code below:

# Plot the data against the dataframe's index.
# For example, the London series is actually plotted as:
# (6, 0.12305), (7, 0.123895), (8, 0.124076), ...
ax = df[["London", "UK"]].plot(marker="o")
# Tick the x-axis the same as the index, i.e: 6, 7, 8..., not 6, 6.5, 7, 7.5...
ax.xaxis.set_ticks(df.index)
# Label the ticks
ax.xaxis.set_ticklabels(df["Quarter"])

Result:

如何将pandas中的季度数据字符串列转换为可绘制的内容。

huangapple
  • 本文由 发表于 2023年2月26日 21:21:41
  • 转载请务必保留本文链接:https://go.coder-hub.com/75572272.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定