r table for many columns

huangapple go评论101阅读模式
英文:

r table for many columns

问题

我的数据集如下。

   ID    Col_01    Col_02   Col_03    Col_04    Col_05    Col_06
   1     1         2        1         3         4         -9
   2     1         1        2         1         2          2
   3     2         4        1         1         1          1
   4     3         1        3         2        -9          4
   5     2         3        4         4         3          2

我想创建一个总结的数据集,其中每列(Col_01-Col_06)中的1、2、3、4和-9的数量如下所示。

    Values    Col_01    Col_02   Col_03    Col_04    Col_05    Col_06   
    1         2         2        2         2         1         1
    2         2         1        1         1         1         2
    3         1         1        1         1         1         0
    4         0         1        1         1         1         1
   -9         0         0        0         0         1         1

到目前为止,我尝试了以下代码

    df %>%
      select(matches(^Col_\\d+$")) %>%
       summarise_all(funs(table))

但我收到一个错误消息:Col_05 的大小必须为 4 或 1,而不是之前列的大小为 4。还有一堆其他警告。是否有任何建议,我如何可以为数据集中以 "Col_" 开头的所有列创建表格摘要?感谢。

英文:

My dataset is like this.

   ID    Col_01    Col_02   Col_03    Col_04    Col_05    Col_06
   1     1         2        1         3         4         -9
   2     1         1        2         1         2          2
   3     2         4        1         1         1          1
   4     3         1        3         2        -9          4
   5     2         3        4         4         3          2

I like to create a summarized dataset where the number of 1s,2s,3s,4s, -9s in each column (Col_01-Col_06) are counted like this.

    Values    Col_01    Col_02   Col_03    Col_04    Col_05    Col_06   
    1         2         2        2         2         1         1
    2         2         1        1         1         1         2
    3         1         1        1         1         1         0
    4         0         1        1         1         1         1
   -9         0         0        0         0         1         1

So far I tried

    df %>%
      select(matches(^Col_\\d+$")) %>%
       summarise_all(funs(table))

but I get an error Col_05 must be of size 4 or 1 , not 5 as earlier column had size 4. and bunch of other warnings. Any suggestions how I can create table summary for all columns starting with Col_ in my dataset is appreciated, Thanks.

答案1

得分: 2

在基本的R中,您可以执行以下操作:

```r
table(stack(df1,-1))

如果您需要一个数据框架:

as.data.frame(matrix(table(stack(df1,-1)))
英文:

In base R you could do

table(stack(df1,-1))

If you need a dataframe:

as.data.frame matrix(table(stack(df1,-1)))

答案2

得分: 1

以下是代码部分的翻译:

Pivoting longer, counting, then pivoting wider is one option.

library(dplyr)
library(tidyr)

df1 %>%
  pivot_longer(starts_with("Col_")) %>%
  count(name, value) %>%
  pivot_wider(names_from = name, 
              values_from = n, 
              values_fill = 0)

请注意,代码部分没有需要翻译的内容,所以只提供了原文的代码。如果您需要其他方面的帮助,请随时告诉我。

英文:

Pivoting longer, counting, then pivoting wider is one option.

library(dplyr)
library(tidyr)

df1 %>% 
  pivot_longer(starts_with("Col_")) %>% 
  count(name, value) %>% 
  pivot_wider(names_from = name, 
              values_from = n, 
              values_fill = 0)

Result:

# A tibble: 5 × 7
  value Col_01 Col_02 Col_03 Col_04 Col_05 Col_06
  <int>  <int>  <int>  <int>  <int>  <int>  <int>
1     1      2      2      2      2      1      1
2     2      2      1      1      1      1      2
3     3      1      1      1      1      1      0
4     4      0      1      1      1      1      1
5    -9      0      0      0      0      1      1

Data:

df1 <- structure(list(ID = 1:5, Col_01 = c(1L, 1L, 2L, 3L, 2L), Col_02 = c(2L, 
1L, 4L, 1L, 3L), Col_03 = c(1L, 2L, 1L, 3L, 4L), Col_04 = c(3L, 
1L, 1L, 2L, 4L), Col_05 = c(4L, 2L, 1L, -9L, 3L), Col_06 = c(-9L, 
2L, 1L, 4L, 2L)), class = "data.frame", row.names = c(NA, -5L
))

huangapple
  • 本文由 发表于 2023年2月24日 12:19:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/75552606.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定