英文:
Difference between AutoModelForSeq2SeqLM and AutoModelForCausalLM
问题
这两个Huggingface上的Auto类之间有什么不同?
我尝试阅读文档,但没有找到区分它们的信息。
英文:
As per the title, how are these two Auto Classes on Huggingface different from each other?
I tried reading the documentation but did not find differentiating information
答案1
得分: 11
"AutoModelForSeq2SeqLM" 直观地用于具有编码器-解码器架构的语言模型,例如 T5 和 BART,而 "AutoModelForCausalLM" 用于自回归语言模型,如所有的 GPT 模型。
这两个类是概念性的 API,用于自动推断这两种类型模型的特定模型类,例如,使用 "AutoModelForCausalLM.from_pretrained('gpt2')" 可以使用 "GPT2LMHeadModel"。例如,您可以查看所有推断模型的源代码(MODEL_FOR_CAUSAL_LM_MAPPING
和 MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
)。
英文:
Intuitively, AutoModelForSeq2SeqLM
is used for language models with encoder-decoder architecture like T5 and BART, while AutoModelForCausalLM
is used for auto-regressive language models like all the GPT models.
These two classes are conceptual APIs to automatically infer a specific model class for the two types of models, e.g., GPT2LMHeadModel
using AutoModelForCausalLM.from_pretrained('gpt2')
. For example, You can see the source code for all the inference models. (MODEL_FOR_CAUSAL_LM_MAPPING
and MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
)
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论