Keras自定义损失函数,使用三个网络输入和model.add_loss。

huangapple go评论61阅读模式
英文:

Keras custom loss function with three network inputs and model.add_loss

问题

你好,这是你要翻译的部分:

"Hi I need some help with a custom loss function in Keras. I am basically building a UNET with a second input which takes on the weight maps like in the original UNET paper. However I am using this UNET for image synthesis and my loss function is a combination of perceptual loss and pixel loss computed using three inputs (input image, reconstructed image and weight maps). The UNET model is a standard UNET with encoder, decoder and skip connections."

以下是代码部分,不需要翻译:

def synthesis_unet_weights(pretrained_weights=None, input_shape=(SIZE_s, SIZE_s, 3), num_classes=1, is_training=True):
    
    ip        = Input(shape=input_shape)
    weight_ip = Input(shape=input_shape[:2] + (num_classes,))
    
    # UNET encoder with the first Conv2D layer taking input ip
    # ...
    
    # UNET decoder with the last layer up1
    # ...
    
    classify = Conv2D(num_classes, (1,1), activation='sigmoid')(up1)
    
    if is_training:
               
        model=Model(inputs=[ip, weight_ip], outputs=[classify])
        model.add_loss(perceptual_loss_weight(ip,classify,weight_ip))
         
        return model
     
    else:
        
        model = Model(inputs=[ip], outputs=[classify])
        weight_ip=ip
        model.add_loss(perceptual_loss_weight(ip,classify,weight_ip))
        
        opt2 = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
        model.compile(optimizer=opt2)
        
        return model

def perceptual_loss_weight(input_image , reconstruct_image,  weights):
    # ...

关于你的问题,你提到模型在训练时似乎没有产生正确的预测,而重构的输出图像与输入图像完全相同。这可能是由于你的损失函数实现有问题。你可以检查以下几个方面:

  1. 确保你的 perceptual_loss_weight 函数按预期工作,它需要计算感知损失和像素损失并返回它们的组合。你可以通过在训练期间将损失打印出来来检查这一点。

  2. 确保你的感知损失部分正常运行,包括特征提取(通过 LossModel)和特征之间的损失计算。

  3. 检查输入数据是否正确传递给模型。确保训练数据包括输入图像和权重图像,并且它们被正确传递到模型中。

  4. 如果模型在训练期间没有正确工作,你可能需要调整超参数,例如学习率、权重等,以获得更好的性能。

最后,确保你的模型和损失函数的架构与你的任务相匹配。可能需要根据任务的要求进行一些微调。

英文:

Hi I need some help with a custom loss function in Keras. I am basically building a UNET with a second input which takes on the weight maps like in the original UNET paper.
However I am using this UNET for image synthesis and my loss function is a combination of perceptual loss and pixel loss computed using three inputs (input image, reconstructed image and weight maps). The UNET model is a standard UNET with encoder, decoder and skip connections.

Below is my code for the network and for the loss function:

def synthesis_unet_weights(pretrained_weights=None, input_shape=(SIZE_s, SIZE_s, 3), num_classes=1, is_training=True):
    
    ip        = Input(shape=input_shape)
    weight_ip = Input(shape=input_shape[:2] + (num_classes,))
    
    UNET encoder with the first Conv2D layer taking input ip
#---------------------------------------------------------------------------------------------------------------------------    
    center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(pool4)
    center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(center)
#---------------------------------------------------------------------------------------------------------------------------
    UNET decoder with the last layer up1
    
    classify = Conv2D(num_classes, (1,1), activation='sigmoid')(up1)
    
    if is_training:
               
        model=Model(inputs=[ip, weight_ip], outputs=[classify])
        model.add_loss(perceptual_loss_weight(ip,classify,weight_ip))
         
        return model
     
    else:
        
        model = Model(inputs=[ip], outputs=[classify])
        weight_ip=ip
        model.add_loss(perceptual_loss_weight(ip,classify,weight_ip))
        
        opt2 = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
        model.compile(optimizer=opt2)
        
        return model        
    return model



def perceptual_loss_weight(input_image , reconstruct_image,  weights):
                       
    input_image       = clip_0_1(input_image)
    reconstruct_image = tf.concat((reconstruct_image,reconstruct_image,reconstruct_image),axis=-1)
    reconstruct_image = clip_0_1(reconstruct_image)
    weights = tf.concat((weights,weights,weights),axis=-1)
    weights = clip_0_1(weights)
            
    h1_list = LossModel(input_image)
    h2_list = LossModel(reconstruct_image)
   
    rc_loss = 0.0

    for h1, h2, weight in zip(h1_list, h2_list, selected_layer_weights):
        
           h1 = K.batch_flatten(h1)
           h2 = K.batch_flatten(h2)
                
           rc_loss = rc_loss + weight * K.sum(K.square(h1 - h2), axis=-1)
           
    
    pixel_loss = K.sum(K.square(K.batch_flatten(weights)*K.batch_flatten(input_image) - K.batch_flatten(weights)*K.batch_flatten(reconstruct_image)),axis=1) 
    return rc_loss+pixel_loss

The weight input is used only for the loss function during training. I managed to train the model (compiling with loss=None) but it is not predicting what it should predict. It looks like the input is just passed through the network (without any modification) directly to the output. The reconstructed output image looks exactly the same as the input image.

答案1

得分: 1

好的,以下是您提供的代码部分的中文翻译:

好的我找到了概念上的错误我将输入图像提供给了 loss 函数的 input_image 输入但实际上应该是 y_true 标签一个可能的解决方案是向网络提供额外的输入ip_labels”,这些输入是感知损失 @tf.function 需要的 y_true 标签下面是作为自定义损失函数的工作解决方案具有虚拟损失层

def MyLoss2(input_image, reconstruct_image, weight_ip):
@tf.function
def perceptual_loss(input_image, reconstruct_image):

    input_image       = clip_0_1(input_image)
    reconstruct_image = clip_0_1(reconstruct_image)
    weights = clip_0_1(weight_ip)

    h1_list = LossModel(input_image)
    h2_list = LossModel(reconstruct_image)

    rc_loss = 0.0

    for h1, h2, weight in zip(h1_list, h2_list, selected_layer_weights):
           h1 = K.batch_flatten(h1)
           h2 = K.batch_flatten(h2)
  
           rc_loss = rc_loss + weight * K.sum(K.square(h1 - h2), axis=-1)
           
    pixel_loss = K.sum(K.square(K.batch_flatten(weights)*K.batch_flatten(input_image) - K.batch_flatten(weights)*K.batch_flatten(reconstruct_image)),axis=1)
    return rc_loss + pixel_loss
return perceptual_loss(input_image, reconstruct_image)

损失层的实现如下

class DummyLayer(Layer):

def __init__(self, is_training):
super().__init__(is_training)
self.is_training=is_training


def get_config(self):
  config = super().get_config()
  config.update({
      "is_training": self.is_training,
  })
  return config

def call(self, inputs,is_training):

ip,classify,weight_ip = tf.unstack(inputs,axis=-1)

self.add_loss(MyLoss2(ip, classify, weight_ip))
    
return inputs

合成 UNET 具有额外的输入 ip_labels

def synthesis_unet_weights(pretrained_weights=None, input_shape=(SIZE_s, SIZE_s, 3), num_classes=1, is_training=True):
    
ip        = Input(shape=input_shape)
    
ip_labels = Input(shape=input_shape)
    
weight_ip = Input(shape=input_shape[:2] + (num_classes,))
    
down1 = Conv2D(64, (3,3),padding='same', activation=LeakyReLU(alpha=0.3), kernel_initializer=initializer)(ip)
    
UNET 编码器带有跳跃连接
    
center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(pool4)
center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(center)

UNET 解码器带有最后一层 up1
    
classify = Conv2D(num_classes, (1,1), activation='sigmoid')(up1)
    
如果正在训练
            
    data=tf.stack([ip_labels,(tf.concat((classify,classify,classify),axis=3)),
                   (tf.concat((weight_ip,weight_ip,weight_ip),axis=3))],axis=-1)
    
    
    classify = DummyLayer(is_training=True)(data, is_training=True)
    
    inp, classify, weight_inp=tf.unstack(classify,axis=-1)
    
    model=Model(inputs=[ip, ip_labels, weight_ip], outputs=[classify])

    opt = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
    
    model.compile(optimizer=opt, metrics=['mse','mae'])      
    
    return model
     
else:
    
    data=tf.stack([ip,(tf.concat((classify,classify,classify),axis=3)), ip],axis=-1)
    
    classify=DummyLayer(is_training=False)(data, is_training=False)
    inp, classify, weight_inp=tf.unstack(classify,axis=-1)

    model = Model(inputs=[ip], outputs=[classify])

    opt = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
    model.compile(optimizer=opt)
    
    return model
    
return model

进行训练

model=synthesis_unet_weights()
model.fit([input_images, labels, weight_maps], labels)

我知道使用堆叠和解堆叠张量的代码不够优雅但它是有效的
英文:

Okay, I have found the conceptual mistake, I was feeding the input images for input_image input to the loss function. But actually those should be y_true labels. One possible solution is to feed the network an additional input “ip_labels” which are the y_true required by the perceptual loss @tf.function. Below is the working solution written as a custom loss function with a dummy loss layer:

def MyLoss2(input_image, reconstruct_image, weight_ip):
@tf.function
def perceptual_loss(input_image, reconstruct_image):
input_image       = clip_0_1(input_image)
reconstruct_image = clip_0_1(reconstruct_image)
weights = clip_0_1(weight_ip)
h1_list = LossModel(input_image)
h2_list = LossModel(reconstruct_image)
rc_loss = 0.0
for h1, h2, weight in zip(h1_list, h2_list, selected_layer_weights):
h1 = K.batch_flatten(h1)
h2 = K.batch_flatten(h2)
rc_loss = rc_loss + weight * K.sum(K.square(h1 - h2), axis=-1)
pixel_loss = K.sum(K.square(K.batch_flatten(weights)*K.batch_flatten(input_image) - K.batch_flatten(weights)*K.batch_flatten(reconstruct_image)),axis=1)
return rc_loss + pixel_loss
return perceptual_loss(input_image, reconstruct_image)

The loss layer is implemented as follows:

class DummyLayer(Layer):
def __init__(self, is_training):
super().__init__(is_training)
self.is_training=is_training
def get_config(self):
config = super().get_config()
config.update({
"is_training": self.is_training,
})
return config
def call(self, inputs,is_training):
ip,classify,weight_ip = tf.unstack(inputs,axis=-1)
self.add_loss(MyLoss2(ip, classify, weight_ip))
return inputs

The synthesis UNET has an additional input ip_labels:

def synthesis_unet_weights(pretrained_weights=None, input_shape=(SIZE_s, SIZE_s, 3), num_classes=1, is_training=True):
ip        = Input(shape=input_shape)
ip_labels = Input(shape=input_shape)
weight_ip = Input(shape=input_shape[:2] + (num_classes,))
down1 = Conv2D(64, (3,3),padding='same', activation=LeakyReLU(alpha=0.3), kernel_initializer=initializer)(ip)
UNET encoder with skips
center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(pool4)
center = Conv2D(1024, (3,3),padding='same', activation='relu', kernel_initializer=initializer)(center)
UNET decoder with the last layer up1
classify = Conv2D(num_classes, (1,1), activation='sigmoid')(up1)
if is_training:
data=tf.stack([ip_labels,(tf.concat((classify,classify,classify),axis=3)),
(tf.concat((weight_ip,weight_ip,weight_ip),axis=3))],axis=-1)
classify = DummyLayer(is_training=True)(data, is_training=True)
inp, classify, weight_inp=tf.unstack(classify,axis=-1)
model=Model(inputs=[ip, ip_labels, weight_ip], outputs=[classify])
opt = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
model.compile(optimizer=opt, metrics=['mse','mae'])      
return model
else:
data=tf.stack([ip,(tf.concat((classify,classify,classify),axis=3)), ip],axis=-1)
classify=DummyLayer(is_training=False)(data, is_training=False)
inp, classify, weight_inp=tf.unstack(classify,axis=-1)
model = Model(inputs=[ip], outputs=[classify])
opt = tf.keras.optimizers.Adam(learning_rate=1e-3,clipnorm=1.0)
model.compile(optimizer=opt)
return model
return model

To train :

model=synthesis_unet_weights()
model.fit([input_images, labels, weight_maps], labels)

I know the code with stacking and unstacking tensors is not particularly elegant but it is working.

huangapple
  • 本文由 发表于 2023年2月24日 02:43:28
  • 转载请务必保留本文链接:https://go.coder-hub.com/75549042.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定