如何在SQL Server中从月度数据中获取季度数据

huangapple go评论71阅读模式
英文:

How to get quarterly data from monthly in SQL Server

问题

我有一个表格,其中包含类似以下的月度数据。

这里我的 AvgSpeedOfAnswer 列是这样计算的:

avg(SpeedOfAnswer)

表格:

日期 AvgSpeedOfAnswerMonth
2022年7月 20.8
2022年8月 22.6
2022年9月 24.9

现在我的需求是,我需要创建一个查询,从上面的月度表格数据中获取季度数据。

我编写了一个查询如下:

SELECT
    '季度' AS 趋势类型,
    DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) AS 趋势开始日期,
    SUM(AvgSpeedOfAnswer) 
FROM
    Month_Stats  
GROUP BY
    DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) 
ORDER BY 
    DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) 

我不确定 AvgSpeedOfAnswer 应该取什么值。

SUM(AvgSpeedOfAnswerMonth) 还是 AVG(AvgSpeedOfAnswerMonth) 还是 AVG(SUM(AvgSpeedOfAnswerMonth))

有人可以建议一下吗?

英文:

I have table where I am having monthly data like below.

Here my AvgSpeedOfAnswer column is calculated like this:

avg(SpeedOfAnswer) 

Table:

Date AvgSpeedOfAnswerMonth
7/1/2022 20.8
8/1/2022 22.6
9/1/2022 24.9

Now my requirement is I need to create a query where I can get quarterly data from above monthly table data.

I wrote a query like this:

SELECT
    'Quarterly' AS TrendType,
	DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) AS TrendStartdate,
	SUM(AvgSpeedOfAnswer) 
FROM
    Month_Stats  
GROUP BY
    DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) 
ORDER BY 
    DATEADD(Q, DATEDIFF(Q, 0, TrendStartdate), 0) 

I am not sure what should I need to take for AvgSpeedOfAnswer.

Is it SUM(AvgSpeedOfAnswerMonth) or AVG(AvgSpeedOfAnswerMonth) or AVG(SUM(AvgSpeedOfAnswerMonth))?

Could anyone please suggest?

答案1

得分: 1

你可以使用 DATEPART  QUARTER

CREATE TABLE tabl11
([Date] datetime, [AvgSpeedOfAnswerMonth] DECIMAL(10,1))
;

INSERT INTO tabl11
([Date], [AvgSpeedOfAnswerMonth])
VALUES
('2022-07-01 02:00:00', 20.8),
('2022-08-01 02:00:00', 22.6),
('2022-09-01 02:00:00', 24.9)
;

``` status
3 行受影响
SELECT YEAR([Date]), DATEPART(QUARTER, [Date]), SUM([AvgSpeedOfAnswerMonth]) sum_quarterly FROM tabl11
GROUP BY YEAR([Date]),DATEPART(QUARTER, [Date])
(No column name) (No column name) sum_quarterly
2022 3 68.3

fiddle


<details>
<summary>英文:</summary>

you can use DATEPART and QUARTER

CREATE TABLE tabl11
([Date] datetime, [AvgSpeedOfAnswerMonth] DECIMAL(10,1))
;

INSERT INTO tabl11
([Date], [AvgSpeedOfAnswerMonth])
VALUES
('2022-07-01 02:00:00', 20.8),
('2022-08-01 02:00:00', 22.6),
('2022-09-01 02:00:00', 24.9)
;

``` status
3 rows affected
SELECT YEAR([Date]), DATEPART(QUARTER, [Date]), SUM([AvgSpeedOfAnswerMonth]) sum_quarterly FROM tabl11
GROUP BY YEAR([Date]),DATEPART(QUARTER, [Date])
(No column name) (No column name) sum_quarterly
2022 3 68.3

fiddle

答案2

得分: 1

我认为你需要使用平均值 (AvgSpeedOfAnswerMonth) 来获得季度平均速度。Sum(AvgSpeedOfAnswerMonth) 和 avg(sum(AvgSpeedOfAnswerMonth)) 给出相同的值,即季度值的总和。

英文:

I think you need avg (AvgSpeedOfAnswerMonth) to get the quarterly average speed over the quarter. Sum(AvgSpeedOfAnswerMonth) and avg(sum(AvgSpeedOfAnswerMonth) give the same value, which is the sum of the quarterly values.

答案3

得分: 0

使用带有参数QUARTER的DATEPART函数,如下所示:

select '季度' as 季度, date as 日期 from yourTable  
group by DATEPART(quarter, date)  
order by DATEPART(quarter, date)
英文:

Use the DATEPART function with parameter QUARTER, like

select &#39;Quarterly&#39; as Quarterly, date as date from yourTable  
group by DATEPART(quarter, date)  
order by DATEPART(quarter, date)  

答案4

得分: 0

如其他人所提到的,
您需要使用DATEPART

SELECT
'季度' AS TrendType,
DATEFROMPARTS(YEAR(Date), ((DATEPART(Q, Date) - 1) * 3) + 1, 1) AS TrendStartdate,
AVG(AvgSpeedOfAnswerMonth) AS AvgSpeedOfAnswerQuarter
FROM
Month_Stats
GROUP BY
YEAR(Date),
DATEPART(Q, Date)
ORDER BY
YEAR(Date),
DATEPART(Q, Date)

英文:

As others mentioned.
You need to use DATEPART

SELECT 
    &#39;Quarterly&#39; AS TrendType,
    DATEFROMPARTS(YEAR(Date), ((DATEPART(Q, Date) - 1) * 3) + 1, 1) AS TrendStartdate,
    AVG(AvgSpeedOfAnswerMonth) AS AvgSpeedOfAnswerQuarter
FROM 
    Month_Stats
GROUP BY 
    YEAR(Date),
    DATEPART(Q, Date)
ORDER BY 
    YEAR(Date),
    DATEPART(Q, Date)

huangapple
  • 本文由 发表于 2023年2月19日 04:47:02
  • 转载请务必保留本文链接:https://go.coder-hub.com/75496305.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定